968 resultados para ocean acidification
Resumo:
Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385-6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.
Resumo:
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.
Resumo:
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks
Resumo:
The decrease in the saturation state of seawater, following seawater acidification, is believed to be the main factor leading to a decrease in the calcification of marine organisms. To provide a physiological explanation for this phenomenon, the effect of seawater acidification was studied on the calcification and photosynthesis of the scleractinian tropical coral Stylophora pistillata. Coral nubbins were incubated for 8 days at three different pH (7.6, 8.0, and 8.2). To differentiate between the effects of the various components of the carbonate chemistry (pH, CO32, HCO3, CO2), tanks were also maintained under similar pH, but with 2-mM HCO3 added to the seawater. The addition of 2-mM bicarbonate significantly increased the photosynthesis in S. pistillata, suggesting carbon-limited conditions. Conversely, photosynthesis was insensitive to changes in pH and pCO2. Seawater acidification decreased coral calcification by ca. 0.1-mg CaCO3 g-1 d-1 for a decrease of 0.1 pH units. This correlation suggested that seawater acidification affected coral calcification by decreasing the availability of the CO32 substrate for calcification. However, the decrease in coral calcification could also be attributed either to a decrease in extra- or intracellular pH or to a change in the buffering capacity of the medium, impairing supply of CO32 from HCO3.
Resumo:
Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310-350 cells mL-1 vs. 1600-2000 cells mL-1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.
Seawater carbonate chemistry and Astrangia poculata mass and zooxanthellate during experiments, 2012
Resumo:
The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. Experimental nutrient enrichments had no significant effect nor did there appear to be any interaction between pCO2 and nutrients. Elevated pCO2 appeared to have a similar effect on coral calcification whether zooxanthellae were present or absent at 16 °C. However, at 24 °C, the interpretation of the results is complicated by a significant interaction between gender and pCO2 for spawning corals. At 16 °C, gamete release was not observed, and no gender differences in calcification rates were observed - female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15% and 19% respectively). Corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns - female corals grown at 24 °C and exposed to CO2 had calcification rates 39% lower than females grown at ambient CO2, while males showed a non-significant decline of 5% under elevated CO2. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification, and considering these factors in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.
Resumo:
Zooxanthellate colonies of the scleractinian coral Astrangia poculata were grown under combinations of ambient and elevated nutrients (5 µM NO, 0.3 µM PO4, and 2nM Fe) and CO2 (780 ppmv) treatments for a period of 6 months. Coral calcification rates, estimated from buoyant weights, were not significantly affected by moderately elevated nutrients at ambient CO2 and were negatively affected by elevated CO2 at ambient nutrient levels. However, calcification by corals reared under elevated nutrients combined with elevated CO2 was not significantly different from that of corals reared under ambient conditions, suggesting that CO2 enrichment can lead to nutrient limitation in zooxanthellate corals. A conceptual model is proposed to explain how nutrients and CO2 interact to control zooxanthellate coral calcification. Nutrient limited corals are unable to utilize an increase in dissolved inorganic carbon (DIC) as nutrients are already limiting growth, thus the effect of elevated CO2 on saturation state drives the calcification response. Under nutrient replete conditions, corals may have the ability to utilize more DIC, thus the calcification response to CO2 becomes the product of a negative effect on saturation state and a positive effect on gross carbon fixation, depending upon which dominates, the calcification response can be either positive or negative. This may help explain how the range of coral responses found in different studies of ocean acidification can be obtained.
Resumo:
Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within the next century and beyond. Our results show that growth and production of inorganic material decreased under high CO2 levels, while carbonic anhydrase activity was stimulated and negatively correlated to algal inorganic content. Photosynthetic efficiency based on oxygen evolution was also negatively affected by increased CO2. The results of this study indicate that C. officinalis may become less competitive under future CO2 levels, which could result in structural changes in future temperate intertidal communities.
Resumo:
This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
Resumo:
Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (~432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (delta O2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.
Resumo:
Antarctic calcified macroorganisms are particularly vulnerable to ocean acidification because many are weakly calcified, the dissolution rates of calcium carbonate are inversely related to temperature, and high latitude seas are predicted to become undersaturated in aragonite by the year 2100. We examined the post-mortem dissolution rates of aragonitic and calcitic shells from four species of Antarctic benthic marine invertebrates (two bivalves, one limpet, one brachiopod) and the thallus of a limpet shell-encrusting coralline alga exposed to acidified pH (7.4) or non-acidified pH (8.2) seawater at a constant temperature of 4 C. Within a period of only 14-35 days, shells of all four species held in pH 7.4 seawater had suffered significant dissolution. Despite calcite being 35% less soluble in seawater than aragonite, there was surprisingly, no consistent pattern of calcitic shells having slower dissolution rates than aragonitic shells. Outer surfaces of shells held in pH 7.4 seawater exhibited deterioration by day 35, and by day 56 there was exposure of aragonitic or calcitic prisms within the shell architecture of three of the macroinvertebrate species. Dissolution of coralline algae was confirmed by differences in weight loss in limpet shells with and without coralline algae. By day 56, thalli of the coralline alga held in pH 7.4 displayed a loss of definition of the conceptacle pores and cracking was evident at the zone of interface with limpet shells. Experimental studies are needed to evaluate whether there are adequate compensatory mechanisms in these and other calcified Antarctic benthic macroorganisms to cope with anticipated ocean acidification. In their absence, these organisms, and the communities they comprise, are likely to be among the first to experience the cascading impacts of ocean acidification.