991 resultados para nuclear import pathway
Resumo:
A pseudogene, designated as "ps(5.8S+ITS-2)", paralogous to the 5.8S gene and internal transcribed spacer (ITS)-2 of the nuclear ribosomal DNA (rDNA), has been recently found in many triatomine species distributed throughout North America, Central America and northern South America. Among characteristics used as criteria for pseudogene verification, secondary structures and free energy are highlighted, showing a lower fit between minimum free energy, partition function and centroid structures, although in given cases the fit only appeared to be slightly lower. The unique characteristics of "ps(5.8S+ITS-2)" as a processed or retrotransposed pseudogenic unit of the ghost type are reviewed, with emphasis on its potential functionality compared to the functionality of genes and spacers of the normal rDNA operon. Besides the technical problem of the risk for erroneous sequence results, the usefulness of "ps(5.8S+ITS-2)" for specimen classification, phylogenetic analyses and systematic/taxonomic studies should be highlighted, based on consistence and retention index values, which in pseudogenic sequence trees were higher than in functional sequence trees. Additionally, intraindividual, interpopulational and interspecific differences in pseudogene amount and the fact that it is a pseudogene in the nuclear rDNA suggests a potential relationships with fitness, behaviour and adaptability of triatomine vectors and consequently its potential utility in Chagas disease epidemiology and control.
Resumo:
By using both conventional and confocal laser scanning microscopy with three monoclonal antibodies recognizing nuclear matrix proteins we have investigated by means of indirect fluorescence whether an incubation of isolated nuclei at the physiological temperature of 37 degrees C induces a redistribution of nuclear components in human K562 erythroleukemia cells. Upon incubation of isolated nuclei for 45 min at 37 degrees C, we have found that two of the antibodies, directed against proteins of the inner matrix network (M(r) 125 and 160 kDa), gave a fluorescent pattern different from that observed in permeabilized cells. By contrast, the fluorescent pattern did not change if nuclei were kept at 0 degrees C. The difference was more marked in case of the 160-kDa polypeptide. The fluorescent pattern detected by the third antibody, which recognizes the 180-kDa nucleolar isoform of DNA topoisomerase II, was unaffected by heat exposure of isolated nuclei. When isolated nuclear matrices prepared from heat-stabilized nuclei were stained by means of the same three antibodies, it was possible to see that the distribution of the 160-kDa matrix protein no longer corresponded to that observable in permeabilized cells, whereas the fluorescent pattern given by the antibody to the 125-kDa polypeptide resembled that detectable in permeabilized cells. The 180-kDa isoform of topoisomerase II was still present in the matrix nucleolar remnants. We conclude that a 37 degrees C incubation of isolated nuclei induces a redistribution of some nuclear matrix antigens and cannot prevent the rearrangement in the spatial organization of one of these antigens that takes place during matrix isolation in human erythroleukemia cells. The practical relevance of these findings is discussed.
Resumo:
En aquest treball s’ha fet una avaluació comparativa dels resultats que es poden obtenir amb el software SpectraClassifier 1.0 (SC) desenvolupat al nostre grup de recerca, comparant‐lo amb l’SPSS, un programa estadístic informàtic estàndard, en un problema de classificació de tumors cerebrals humans amb dades d’espectroscopia de ressonància magnètica de protó (1H‐ERM). El interès d’aquesta avaluació comparativa radica en la documentació dels resultats obtinguts amb els dos sistemes quan en la correcció dels resultats obtinguts, així com ponderar la versatilitat i usabilitat dels dos paquets de software per a una aplicació concreta d’interès al treball del GABRMN. Per a aquest treball s’han utilitzat dades provinents de dos projecte europeus multicèntrics (INTERPRET i eTumour) en els quals vam participar. Les classes tumorals utilitzades (d’un total de 217 pacients) han sigut les majoritàries des del punt de vista epidemiològic: glioblastoma multiforme, metàstasi, astrocitomes de grau II, ligodendrogliomes de grau II, oligoastrocitomes de grau II i meningiomes de baix grau. Amb les dades d’aquests pacients s’han dissenyat classificadors basats en l’anàlisi discriminant lineal (LDA), s’han avaluat amb diferents mètodes matemàtics i s’han testat amb dades independents. Els resultats han estat satisfactoris, obtenint amb l’SC resultats més robusts amb dades independents respecte la classificació realitzada per l’SPSS.
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H(2)O(2) catabolism), thus implying that H(2)O(2) is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H(2)O(2), a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H(2)O(2) production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell.
Resumo:
In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.
Resumo:
The cellular response to an inflammatory stressor requires a proinflammatory cellular activation followed by a controlled resolution of the response to restore homeostasis. We hypothesized that biliverdin reductase (BVR) by binding biliverdin (BV) quells the cellular response to endotoxin-induced inflammation through phosphorylation of endothelial nitric oxide synthase (eNOS). The generated NO, in turn, nitrosylates BVR, leading to nuclear translocation where BVR binds to the Toll-like receptor-4 (TLR4) promoter at the Ap-1 sites to block transcription. We show in macrophages that BV-induced eNOS phosphorylation (Ser-1177) and NO production are mediated in part by Ca(2+)/calmodulin-dependent kinase kinase. Furthermore, we show that BVR is S-nitrosylated on one of three cysteines and that this posttranslational modification is required for BVR-mediated signaling. BV-induced nuclear translocation of BVR and inhibition of TLR4 expression is lost in macrophages derived from Enos(-/-) mice. In vivo in mice, BV provides protection from acute liver damage and is dependent on the availability of NO. Collectively, we elucidate a mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages.
Resumo:
Limiting the development of secondary damage represents one of the major goals of neuroprotective therapies after spinal cord injury. Here, we demonstrate that specific JNK inhibition via a single intraperitoneal injection of the cell permeable peptide D-JNKI1 6h after lesion improves locomotor recovery assessed by both the footprint and the BMS tests up to 4 months post-injury in mice. JNK inhibition prevents c-jun phosphorylation and caspase-3 cleavage, has neuroprotective effects and results in an increased sparing of white matter at the lesion site. Lastly, D-JNKI1 treated animals show a lower increase of erythrocyte extravasation and blood brain barrier permeability, thus indicating protection of the vascular system. In total, these results clearly point out JNK inhibition as a promising neuroprotective strategy for preventing the evolution of secondary damage after spinal cord injury.
Resumo:
Zymosan induced arthritis is thought to be dependent on activation of the alternative pathway of complement and is short lived. Recently it has been demonstrated that zymosan is capable of activating the innate immune system via toll-like receptor 2 (TLR2) and TLR6. These receptors play a role in linking the innate to the adaptive immune response. We have therefore reinvestigated the mechanisms by which zymosan induces arthritis by analyzing the kinetic of inflammation, the joint histology, lymphocyte proliferation in wild type and TLR2 deficient mice.
Resumo:
We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that "match the expectation" induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that "match the expectation". In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture.
Resumo:
Glioblastoma multiforme (GBM) is the most aggressive brain tumor that, by virtue of its resistance to chemotherapy and radiotherapy, is currently incurable. Identification of molecules whose targeting may eliminate GBM cells and/or sensitize glioblastoma cells to cytotoxic drugs is therefore urgently needed. CD44 is a major cell surface hyaluronan receptor and cancer stem cell marker that has been implicated in the progression of a variety of cancer types. However, the major downstream signaling pathways that mediate its protumor effects and the role of CD44 in the progression and chemoresponse of GBM have not been established. Here we show that CD44 is upregulated in GBM and that its depletion blocks GBM growth and sensitizes GBM cells to cytotoxic drugs in vivo. Consistent with this observation, CD44 antagonists potently inhibit glioma growth in preclinical mouse models. We provide the first evidence that CD44 functions upstream of the mammalian Hippo signaling pathway and that CD44 promotes tumor cell resistance to reactive oxygen species-induced and cytotoxic agent-induced stress by attenuating activation of the Hippo signaling pathway. Together, our results identify CD44 as a prime therapeutic target for GBM, establish potent antiglioma efficacy of CD44 antagonists, uncover a novel CD44 signaling pathway, and provide a first mechanistic explanation as to how upregulation of CD44 may constitute a key event in leading to cancer cell resistance to stresses of different origins. Finally, our results provide a rational explanation for the observation that functional inhibition of CD44 augments the efficacy of chemotherapy and radiation therapy.
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.
Resumo:
BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.
Resumo:
Vitamin A is necessary for normal embryonic development, but its role in the adult brain is poorly understood. Vitamin A derivatives, retinoids, are involved in a complex signaling pathway that regulates gene expression and, in the central nervous system, controls neuronal differentiation and neural tube patterning. Although a major functional implication of retinoic signaling has been repeatedly suggested in synaptic plasticity, learning and memory, sleep, schizophrenia, depression, Parkinson disease, and Alzheimer disease, the targets and the underlying mechanisms in the adult brain remain elusive.