843 resultados para nonlinear mixed effects models
Resumo:
Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
This project addresses the potential impacts of changing climate on dry-season water storage and discharge from a small, mountain catchment in Tanzania. Villagers and water managers around the catchment have experienced worsening water scarcity and attribute it to increasing population and demand, but very little has been done to understand the physical characteristics and hydrological behavior of the spring catchment. The physical nature of the aquifer was characterized and water balance models were calibrated to discharge observations so as to be able to explore relative changes in aquifer storage resulting from climate changes. To characterize the shallow aquifer supplying water to the Jandu spring, water quality and geochemistry data were analyzed, discharge recession analysis was performed, and two water balance models were developed and tested. Jandu geochemistry suggests a shallow, meteorically-recharged aquifer system with short circulation times. Baseflow recession analysis showed that the catchment behavior could be represented by a linear storage model with an average recession constant of 0.151/month from 2004-2010. Two modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-Sutcliffe efficiencies between 0.86 and 0.91. The modified TMWB models were then used to examine the impacts of nineteen, perturbed climate scenarios to test the potential impacts of regional climate change on catchment storage during the dry season. Forcing the models with realistic scenarios for average monthly temperature, annual precipitation, and seasonal rainfall distribution demonstrated that even small climate changes might adversely impact aquifer storage conditions at the onset of the dry season. The scale of the change was dependent on the direction (increasing vs. decreasing) and magnitude of climate change (temperature and precipitation). This study demonstrates that small, mountain aquifer characterization is possible using simple water quality parameters, recession analysis can be integrated into modeling aquifer storage parameters, and water balance models can accurately reproduce dry-season discharges and might be useful tools to assess climate change impacts. However, uncertainty in current climate projections and lack of data for testing the predictive capabilities of the model beyond the present data set, make the forecasts of changes in discharge also uncertain. The hydrologic tools used herein offer promise for future research in understanding small, shallow, mountainous aquifers and could potentially be developed and used by water resource professionals to assess climatic influences on local hydrologic systems.
Resumo:
This study examines the consequences of living in segregated and mixed neighbourhoods on ingroup bias and offensive action tendencies, taking into consideration the role of intergroup experiences and perceived threat. Using adult data from a cross-sectional survey in Belfast, Northern Ireland, we tested a model that examined the relationship between living in segregated (N = 396) and mixed (N = 562) neighbourhoods and positive contact, exposure to violence, perceived threat and outgroup orientations. Our results show that living in mixed neighbourhoods was associated with lower ingroup bias and reduced offensive action tendencies. These effects were partially mediated by positive contact. However, our analysis also shows that respondents living in mixed neighbourhoods report higher exposure to political violence and higher perceived threat to physical safety. These findings demonstrate the importance of examining both social experience and threat perceptions when testing the relationship between social environment and prejudice.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressed cannabinoid receptor 2 (CB2). It is found in relatively high concentrations in many spices and food plants. A number of studies have shown that CB2 is critically involved in the modulation of inflammatory and neuropathic pain responses. In this study, we have investigated the analgesic effects of BCP in animal models of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced inflammatory (late phase) pain responses in the formalin test in a CB2 receptor-dependent manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective than the subcutaneously injected synthetic CB2 agonist JWH-133. Thus, the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.
Resumo:
In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.
Resumo:
Objective: To determine how a clinician’s background knowledge, their tasks, and displays of information interact to affect the clinician’s mental model. Design: Repeated Measure Nested Experimental Design Population, Sample, Setting: Populations were gastrointestinal/internal medicine physicians and nurses within the greater Houston area. A purposeful sample of 24 physicians and 24 nurses were studied in 2003. Methods: Subjects were randomized to two different displays of two different mock medical records; one that contained highlighted patient information and one that contained non-highlighted patient information. They were asked to read and summarize their understanding of the patients aloud. Propositional analysis was used to understand their comprehension of the patients. Findings: Different mental models were found between physicians and nurses given the same display of information. The information they shared was very minor compared to the variance in their mental models. There was additionally more variance within the nursing mental models than the physician mental models given different displays of the same information. Statistically, there was no interaction effect between the display of information and clinician type. Only clinician type could account for the differences in the clinician comprehension and thus their mental models of the cases. Conclusion: The factors that may explain the variance within and between the clinician models are clinician type, and only in the nursing group, the use of highlighting.
Resumo:
Tables of estimated regression coefficients, usually accompanied by additional information such as standard errors, t-statistics, p-values, confidence intervals or significance stars, have long been the preferred way of communicating results from statistical models. In recent years, however, the limits of this form of exposition have been increasingly recognized. For example, interpretation of regression tables can be very challenging in the presence of complications such as interaction effects, categorical variables, or nonlinear functional forms. Furthermore, while these issues might still be manageable in the case of linear regression, interpretational difficulties can be overwhelming in nonlinear models such as logistic regression. To facilitate sensible interpretation of such models it is often necessary to compute additional results such as marginal effects, predictive margins, or contrasts. Moreover, smart graphical displays of results can be very valuable in making complex relations accessible. A number of helpful commands geared at supporting these tasks have been recently introduced in Stata, making elaborate interpretation and communication of regression results possible without much extra effort. Examples of such commands are -margins-, -contrasts-, and -marginsplot-. In my talk, I will discuss the capabilities of these commands and present a range of examples illustrating their use.
Resumo:
Stata is a general purpose software package that has become popular among various disciplines such as epidemiology, economics, or social sciences. Users like Stata for its scientific approach, its robustness and reliability, and the ease with which its functionality can be extended by user written programs. In this talk I will first give a brief overview of the functionality of Stata and then discuss two specific features: survey estimation and predictive margins/marginal effects. Most surveys are based on complex samples that contain multiple sampling stages, are stratified or clustered, and feature unequal selection probabilities. Standard estimators can produce misleading results in such samples unless the peculiarities of the sampling plan are taken into account. Stata offers survey statistics for complex samples for a wide variety of estimators and supports several variance estimation procedures such as linearization, jackknife, and balanced repeated replication (see Kreuter and Valliant, 2007, Stata Journal 7: 1-21). In the talk I will illustrate these features using applied examples and I will also show how user written commands can be adapted to support complex samples. Complex can also be the models we fit to our data, making it difficult to interpret them, especially in case of nonlinear or non-additive models (Mood, 2010, European Sociological Review 26: 67-82). Stata provides a number of highly useful commands to make results of such models accessible by computing and displaying predictive margins and marginal effects. In my talk I will discuss these commands provide various examples demonstrating their use.
Resumo:
Results from the Zurich study have shown lasting associations between sport practice and mental health. The effects are pronounced in people with pre-exising mental health problems. This analysis aims to replicate these results with the large Swiss Household Panel data set and to provide more differentiated results. The analysis covered the interviews 1999-2003 and included 3891 stayers, i.e., participants who were interviewed in all years. The outcome variables are depression / blues / anxiety, weakness / weariness, sleeping problems, energy / optimism. Confounding variables include sex, age, education level, citizenship. The analyses were carried out with mixed models (depression, optimism) and GEE models (weakness, sleep). About 60% of the SHP participants practise weekly or daily an individual or a team sport. A similar proportion enjoys a frequent physical activity (for half an hour minimum) which makes oneself slightly breathless. There are slight age-specific differences but also noteworthy regional differences. Practice of sport is clearly interrelated with self-reported depressive symptoms, optimism and weakness. This applies even though some relevant confounders – sex, educational level and citizenship – were introduced into the model. However, no relevant interaction effects with time could be shown. Moreover, direct interrelations commonly led to better fits than models with lagged variables, thus indicating that delayed effects of sport practice on the self-reported psychological complaints are less important. Model variants resulted for specific subgroups, for example, participants with a high vs. low initial activity level. Lack of sport practice is an interesting marker for serious psychological symptoms and mental disorders. The background of this association may differ in different subgroups, and should stimulate further investigations in this area.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.