942 resultados para nickel aluminides
Resumo:
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with reactive nitrogen species (RNS) are well recognised for playing a dual role as both deleterious and beneficial species. The "two-faced" character of ROS is substantiated by growing body of evidence that ROS within cells act as secondary messengers in intracellular signalling cascades, which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. The cumulative production of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of cancer cell that are linked with altered redox regulation of cellular signalling pathways. Oxidative stress induces a cellular redox imbalance which has been found to be present in various cancer cells compared with normal cells; the redox imbalance thus may be related to oncogenic stimulation. DNA mutation is a critical step in carcinogenesis and elevated levels of oxidative DNA lesions (8-OH-G) have been noted in various tumours, strongly implicating such damage in the etiology of cancer. It appears that the DNA damage is predominantly linked with the initiation process. This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process. Attention is focused on structural, chemical and biochemical aspects of free radicals, the endogenous and exogenous sources of their generation, the metal (iron, copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel)-mediated formation of free radicals (e.g. Fenton chemistry), the DNA damage (both mitochondrial and nuclear), the damage to lipids and proteins by free radicals, the phenomenon of oxidative stress, cancer and the redox environment of a cell, the mechanisms of carcinogenesis and the role of signalling cascades by ROS; in particular. ROS activation of AP-1 (activator protein) and NF-kappa B (nuclear factor kappa B) signal transduction pathways, which, in turn lead to the transcription of genes involved in cell growth regulatory pathways. The role of enzymatic (superoxide dismutase (Cu. Zn-SOD. Mn-SOD), catalase, glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E, carotenoids, thiol antioxidants (glutathione, thioredoxin and lipoic acid), flavonoids, selenium and others) in the process of careinogenesis as well as the antioxidant interactions with various regulatory factors, including Ref-1, NF-kappa B, AP-1 are also reviewed. 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.
Resumo:
The thermal decomposition of the complex K-4[Ni(NO2)6]center dot H2O has been investigated over the temperature range 25-600 degrees C by a combination of infrared spectroscopy, powder X-ray diffraction, FAB-mass spectrometry and elemental analysis. The first stage of reaction is loss of water and isomerisation of one of the coordinated nitro groups to form the complex K-4 [Ni(NO2)(4) (ONO)]center dot NO2. At temperatures around 200 degrees C the remaining nitro groups within the complex isomerise to the chelating nitrite form and this process acts as a precursor to the loss of NO2 gas at temperatures above 270 degrees C. The product, which is stable up to 600 degrees C, is the complex K-4[Ni(ONO)(4)]center dot NO2, where the nickel atom is formally in the +1 oxidation state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
Two new nickel(11) complexes, [NiLL'(H2O)(2)Cl] (1) and [{NiLL'(H2O)](2)(mu-H)]NO3·H2O(2), have been synthesized using a tridentate Schiff base ligand, HL, 2-[(2-dimethylamino-ethylimino)-methyl]-phenol, along with Cl- or NO3(-) as an anionic co-ligand or counter anion (where L'H = salicylaldehyde). Both complexes have been characterized by X-ray crystallography. The structural analyses reveal that complex 1 is mononuclear whereas 2 is a hydrogen-bridged dinuclear complex. The Ni(II) ions possess a distorted octahedral geometry in both structures. Both complexes show negative solvatochromic behaviour with increasing donor number (DN) of the solvent. In more coordinating solvents, like DMSO or methanol, the colour of the solutions is green, whereas in less coordinating solvents, like dichloromethane (DCM) or acetonitrile, it is red.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.
Resumo:
The state-resolved reactivity of CH4 in its totally symmetric C-H stretch vibration (�1) has been measured on a Ni(100) surface. Methane molecules were accelerated to kinetic energies of 49 and 63:5 kJ=mol in a molecular beam and vibrationally excited to �1 by stimulated Raman pumping before surface impact at normal incidence. The reactivity of the symmetric-stretch excited CH4 is about an order of magnitude higher than that of methane excited to the antisymmetric stretch (�3) reported by Juurlink et al. [Phys. Rev. Lett. 83, 868 (1999)] and is similar to that we have previously observed for the excitation of the first overtone (2�3). The difference between the state-resolved reactivity for �1 and �3 is consistent with predictions of a vibrationally adiabatic model of the methane reaction dynamics and indicates that statistical models cannot correctly describe the chemisorption of CH4 on nickel.
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
We have investigated the chemisorption of CH3D and CD3H on Pt{11 0}-(1 2) by performing first-principles molecular dynamics simulations of the recombinative desorption of CH3D (from adsorbed methyl and deuterium) and of CD3H (from adsorbed trideuteromethyl and hydrogen). Vibrational analysis of the symmetry adapted internal coordinates of the desorbing molecules shows that excitation of the single C– D (C–H) bond in the parent molecule is strongly correlated with energy excess in the reaction coordinate. The results of the molecular dynamics simulations are consistent with observed mode- and bond-specific reactivity measurements for chemisorption of methane and its isotopomers on platinum and nickel surfaces.
Resumo:
Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.
Resumo:
Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.