996 resultados para neural crest migration
Resumo:
An increase in cognitive control has been systematically observed in responses produced immediately after the commission of an error. Such responses show a delay in reaction time (post-error slowing) and an increase in accuracy. To characterize the neurophysiological mechanism involved in the adaptation of cognitive control, we examined oscillatory electrical brain activity by electroencephalogram and its corresponding neural network by event-related functional magnetic resonance imaging in three experiments. We identified a new oscillatory thetabeta component related to the degree of post-error slowing in the correct responses following an erroneous trial. Additionally, we found that the activity of the right dorsolateral prefrontal cortex, the right inferior frontal cortex, and the right superior frontal cortex was correlated with the degree of caution shown in the trial following the commission of an error. Given the overlap between this brain network and the regions activated by the need to inhibit motor responses in a stop-signal manipulation, we conclude that the increase in cognitive control observed after the commission of an error is implemented through the participation of an inhibitory mechanism.
Resumo:
Given the structural and acoustical similarities between speech and music, and possible overlapping cerebral structures in speech and music processing, a possible relationship between musical aptitude and linguistic abilities, especially in terms of second language pronunciation skills, was investigated. Moreover, the laterality effect of the mother tongue was examined with both adults and children by means of dichotic listening scores. Finally, two event-related potential studies sought to reveal whether children with advanced second language pronunciation skills and higher general musical aptitude differed from children with less-advanced pronunciation skills and less musical aptitude in accuracy when preattentively processing mistuned triads and music / speech sound durations. The results showed a significant relationship between musical aptitude, English language pronunciation skills, chord discrimination ability, and sound-change-evoked brain activation in response to musical stimuli (durational differences and triad contrasts). Regular music practice may also have a modulatory effect on the brain’s linguistic organization and cause altered hemispheric functioning in those who have regularly practised music for years. Based on the present results, it is proposed that language skills, both in production and discrimination, are interconnected with perceptual musical skills.
Resumo:
Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.
Resumo:
This paper brings an active and provocative area of current research. It describes the investigation of electron transfer (ET) chemistry in general and ET reactions results in DNA in particular. Two DNA intercalating molecules were used: Ethidium Bromide as the donor (D) and Methyl-Viologen as the acceptor (A), the former intercalated between DNA bases and the latter in its surface. Using the Perrin model and fluorescence quenching measurements the distance of electron migration, herein considered to be the linear spacing between donor and acceptor molecule along the DNA molecule, was obtained. A value of 22.6 (± 1.1) angstroms for the distance and a number of 6.6 base pairs between donor and acceptor were found. In current literature the values found were 26 angstroms and almost 8 base pairs. DNA electron transfer is considered to be mediated by through-space interactions between the p-electron-containing base pairs.
Resumo:
Metastatic bone lesions are commonly associated with prostate cancer affecting approximately 60-80% of the patients. The progression of prostate cancer into an advanced stage is a complex process and its molecular mechanisms are poorly understood. So far, no curative treatment is available for advanced stages of prostate cancer. Bisphosphonates (BPs) are synthetic pyrophosphate analogues, which are used as therapeutics for various metabolic bone diseases because of their ability to inhibit osteoclastic bone resorption. Nitrogen-containing bisphosphonates block the function of osteoclasts by disturbing the vesicular traffic and the mevalonate pathway -related enzymes, for example farnesyl diphosphate synthase, which is involved in post-translational isoprenylation of small GTPases. In addition, the anti-proliferative, anti-invasive and pro-apoptotic effects of nitrogen-containing bisphosphonates on various cancer cell lines have been reported. The aim of this thesis work was to clarify the effects of bisphosphonates on prostate cancer cells, focusing on the mechanisms of adhesion, invasion and migration. Furthermore, the role of the mevalonate pathway and prenylation reactions in invasion and regulation of the cytoskeleton of prostate cancer cells were examined. Finally, the effects of alendronate on cytoskeleton- and actin-related proteins in prostate cancer cells were studied in vitro and in vivo. The results showed that the nitrogen-containing bisphosphonate alendronate inhibited the adhesion of prostate cancer cells to various extracellular matrix proteins and migration and invasion in vitro. Inhibition of invasion and migration was reversed by mevalonate pathway intermediates. The blockage of the prenylation transferases GGTase I and FTase inhibited the invasion, migration and actin organization of prostate cancer cells. The marked decrease of cofilin was observed by the prenylation inhibitors used. Inhibition of GGTase I also disrupted the regulation of focal adhesion kinase and paxillin. In addition, alendronate disrupted the cytoskeletal organization and decreased the level of cofilin in vitro and in vivo. The decrease of the cofilin level by alendronate could be one of the key mechanisms behind the observed inhibition of migration and invasion. Based on the effects of nitrogen-containing bisphosphonates on tumor cell invasion and cytoskeletal organization, they can be suggested to be developed as therapeutics for inhibiting prostate cancer metastasis.
Resumo:
The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.
Resumo:
The human language-learning ability persists throughout life, indicating considerable flexibility at the cognitive and neural level. This ability spans from expanding the vocabulary in the mother tongue to acquisition of a new language with its lexicon and grammar. The present thesis consists of five studies that tap both of these aspects of adult language learning by using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) during language processing and language learning tasks. The thesis shows that learning novel phonological word forms, either in the native tongue or when exposed to a foreign phonology, activates the brain in similar ways. The results also show that novel native words readily become integrated in the mental lexicon. Several studies in the thesis highlight the left temporal cortex as an important brain region in learning and accessing phonological forms. Incidental learning of foreign phonological word forms was reflected in functionally distinct temporal lobe areas that, respectively, reflected short-term memory processes and more stable learning that persisted to the next day. In a study where explicitly trained items were tracked for ten months, it was found that enhanced naming-related temporal and frontal activation one week after learning was predictive of good long-term memory. The results suggest that memory maintenance is an active process that depends on mechanisms of reconsolidation, and that these process vary considerably between individuals. The thesis put special emphasis on studying language learning in the context of language production. The neural foundation of language production has been studied considerably less than that of perceptive language, especially on the sentence level. A well-known paradigm in language production studies is picture naming, also used as a clinical tool in neuropsychology. This thesis shows that accessing the meaning and phonological form of a depicted object are subserved by different neural implementations. Moreover, a comparison between action and object naming from identical images indicated that the grammatical class of the retrieved word (verb, noun) is less important than the visual content of the image. In the present thesis, the picture naming was further modified into a novel paradigm in order to probe sentence-level speech production in a newly learned miniature language. Neural activity related to grammatical processing did not differ between the novel language and the mother tongue, but stronger neural activation for the novel language was observed during the planning of the upcoming output, likely related to more demanding lexical retrieval and short-term memory. In sum, the thesis aimed at examining language learning by combining different linguistic domains, such as phonology, semantics, and grammar, in a dynamic description of language processing in the human brain.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.
Resumo:
We report a rare cause of pyloric stenosis caused by migration of surgical clips into a duodenal ulcer following laparoscopic cholecystectomy. Even after endoscopic removal of the clips the inflammatory reaction during the healing process caused a stenosis of the pylorus that eventually required a truncal vagotomy and gastroenterostomy.
Resumo:
Millions of enterprises move their applications to a cloud every year. According to Forrester Research “the global cloud computing market will grow from a $40.7 billion in 2011 to $241 billion in 2020”. Due to increased interests and demand broad range of providers and solutions have appeared in the market. It is vital to be able to predict possible problems correctly and to classify and mitigate risks associated with the migration process. The study will show the main criteria that should be taken into consideration while making decision of moving enterprise applications to the cloud and choosing appropriate vendor. The main goal of the research is to identify main problems during the migration to a cloud and propose a solution for their prevention and mitigation of consequences in case of occurrence. The research provides an overview of existing cloud solutions and deployment models for enterprise applications. It identifies decision drivers of an applications migration to a cloud and potential risks and benefits associated with this. Finally, the best practices for the successful enterprise-to-cloud migration based on the case studies analysis are formulated.