975 resultados para nasal tumors
Resumo:
PURPOSE: The aim of the study was to evaluate the clinical outcomes of secondary functional cheilorhinoplasty of residual lip and nasal deformities caused by muscular deficiency in cleft patients. PATIENTS AND METHODS: During a 4-year period, 31 patients underwent cheilorhinoplasty, including complete reopening of the cleft borders and differentiated mimic muscle reorientation. In 21 patients, remarkable residual clefts of the anterior palate were also closed. Simultaneous alveolar bone grafting was performed in 15 patients. The minimum follow-up was 1 year. Cosmetic features evaluated were spontaneous facial appearance and changes in position of the nasal floor and the philtrum. The width of the alar base was measured. For functional outcomes, deficiency during mimic movements was evaluated, using standardized photographs taken preoperatively and postoperatively. The final results, judged according to defined criteria with several clinical factors, were compared. RESULTS: Cosmetic and functional improvement was achieved in all patients. In young patients (aged 4 to 9 years), the improvements were noteworthy. There were no differences in outcomes between the groups with and without simultaneous grafting, except for unilateral cases with minor muscular deficiency, in whom bone grafting before cheilorhinoplasty led to better results. CONCLUSION: In cases of major muscular deficiency, early cheilorhinoplasty should be performed at age 7 years, without waiting for the usual timing of bone grafting. In minor and moderate cases, the operation can ideally be done in combination with bone grafting.
Resumo:
BACKGROUND: To improve postoperative pulmonary reserve, we have employed parenchyma-sparing resections for central lung tumors irrespective of pulmonary function. The results of lobectomy, pneumonectomy, and sleeve resection were analyzed retrospectively. METHODS: From October 1995 to June 1999, 422 typical lung resections were performed for lung cancer. Of these, 301 were lobectomies (group I), 81 were sleeve resections (group II), and 40 were pneumonectomies (group III). RESULTS: Operative mortality was 2% in group I, 1.2% in group II, and 7.5% in group III (group I and II vs. group III, p<0.03). Mean time of intubation was 1.0+/-4.1 days in group I, 0.9+/-1.3 days in group II, and 3.6+/-11.2 days in group III (groups I and II vs. group III, p<0.01). The incidence of bronchial complications was 1.3% in group I, none in group II, and 7.5% in group III (group I and II vs group III, p<0.001). After 2 years, survival was 64% in group I, 61.9% in group II, and 56.1% in group III (p = NS). Freedom from local disease recurrence was 92.1% in group I, 95.7% in group II, and 90.9% in group III after 2 years (p = NS). CONCLUSIONS: Sleeve resection is a useful surgical option for the treatment of central lung tumors, thus avoiding pneumonectomy with its associated risks. Morbidity, early mortality, long-term survival, and recurrence of disease after sleeve resection are similar to those seen after lobectomy.
Resumo:
The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.
Resumo:
BACKGROUND: Exhaled nitric oxide (FENO) is a marker for allergic airway inflammation. We wondered whether in patients with intermittent allergic rhinitis only (i) natural pollen exposure and (ii) artificial pollen exposure by repeated nasal allergen provocations may lead to an elevation of FENO. METHODS: In two prospective studies, we compared the FENO of nonatopic controls with the FENO of nonasthmatic individuals with mild intermittent rhinitis to tree and/or grass pollen. Study I: 13 atopic individuals and seven controls had measurements of FENO, blood eosinophils and eosinophilic cationic protein (ECP) before, during and after pollen season. Study II: 16 atopic individuals and 12 controls had nasal allergen provocations on four following days out of pollen season, with daily measurements of FENO before, 2 and 6 h after provocation, and determination of blood eosinophils, ECP and FEV1 at baseline, on days 5 and 10-12. RESULTS: Natural pollen exposure (study I) caused a significant elevation of FENO in allergic individuals. Nasal allergen provocations (study II) did not elicit a statistically significant rise neither of FENO nor of blood eosinophils between baseline and day 5. However, a subgroup of four individuals with a rise of blood eosinophils during nasal allergen provocations showed also a rise of FENO. CONCLUSIONS: We suppose that in allergic rhinitis a concomitant reaction of the bronchial system is dependent on a strong local inflammation leading to a generalized immune stimulation.
Resumo:
A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.
Resumo:
FGFRL1 is a novel member of the FGF receptor family. It is expressed at very low levels in a great variety of cell lines and at relatively high levels in SW1353 chondrosarcoma cells, MG63 osteosarcoma cells and A204 rhabdomyosarcoma cells. Screening of 241 different human tumors with the help of a cancer profiling array suggested major alterations in the relative expression of FGFRL1 in ovarian tumors. Five distinct ovary tumors were therefore analyzed by quantitative and competitive PCR. Several tumors were found to exhibit a significant decrease in the expression of FGFRL1 in the tumor tissue relative to the matched control tissue. One ovarian tumor showed a 25-fold increase in the relative expression. Since FGFRL1 appears to be involved in the control of cell proliferation and differentiation, its aberrant expression might contribute to the development and progression of ovarian tumors.
Resumo:
Tenascins represent a family of extracellular matrix glycoproteins with distinctive expression patterns. Here we have analyzed the most recently described member, tenascin-W, in breast cancer. Mammary tumors isolated from transgenic mice expressing hormone-induced oncogenes reveal tenascin-W in the stroma around lesions with a high likelihood of metastasis. The presence of tenascin-W was correlated with the expression of its putative receptor, alpha8 integrin. HC11 cells derived from normal mammary epithelium do not express alpha8 integrin and fail to cross tenascin-W-coated filters. However, 4T1 mammary carcinoma cells do express alpha8 integrin and their migration is stimulated by tenascin-W. The expression of tenascin-W is induced by BMP-2 but not by TGF-beta1, though the latter is a potent inducer of tenascin-C. The expression of tenascin-W is dependent on p38MAPK and JNK signaling pathways. Since preinflammatory cytokines also act through p38MAPK and JNK signaling pathways, the possible role of TNF-alpha in tenascin-W expression was also examined. TNF-alpha induced the expression of both tenascin-W and tenascin-C, and this induction was p38MAPK- and cyclooxygenase-dependent. Our results show that tenascin-W may be a useful diagnostic marker for breast malignancies, and that the induction of tenascin-W in the tumor stroma may contribute to the invasive behavior of tumor cells.