851 resultados para multivariate optimization
Resumo:
It has been years since the introduction of the Dynamic Network Optimization (DNO) concept, yet the DNO development is still at its infant stage, largely due to a lack of breakthrough in minimizing the lengthy optimization runtime. Our previous work, a distributed parallel solution, has achieved a significant speed gain. To cater for the increased optimization complexity pressed by the uptake of smartphones and tablets, however, this paper examines the potential areas for further improvement and presents a novel asynchronous distributed parallel design that minimizes the inter-process communications. The new approach is implemented and applied to real-life projects whose results demonstrate an augmented acceleration of 7.5 times on a 16-core distributed system compared to 6.1 of our previous solution. Moreover, there is no degradation in the optimization outcome. This is a solid sprint towards the realization of DNO.
Resumo:
Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.
Resumo:
Verbal communication is essential for human society and human civilization. Non-verbal communication, on the other hand, is more widely used not only by human but also other kind of animals, and the content of information is estimated even larger than the verbal communication. Among the non-verbal communication mutual motion is the simplest and easiest to study experimentally and analytically. We measured the power spectrum of the hand velocity in various conditions and clarified the following points on the feed-back and feed- forward mechanism as basic knowledge to understand the condition of good communication.
Resumo:
This paper uses a novel numerical optimization technique - robust optimization - that is well suited to solving the asset-liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximise the Sharpe ratio. We disaggregate pension liabilities into three components - active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes-Stein, and Black-Litterman models as well as the actual USS investment decisions. Over a 144 month out-of-sample period robust optimization is superior to the four benchmarks across 20 performance criteria, and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.
Resumo:
The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P < 0.05) batter viscosity, giving heterogeneous bubbles size distributions as it was observed by light microscopy. Using confocal laser scanning microscopy the fat was observed to be located at the bubbles’ interface, enabling an optimum crumb cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved.
Resumo:
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Resumo:
In this paper we study the problem of maximizing a quadratic form 〈Ax,x〉 subject to ‖x‖q=1, where A has matrix entries View the MathML source with i,j|k and q≥1. We investigate when the optimum is achieved at a ‘multiplicative’ point; i.e. where x1xmn=xmxn. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS
Resumo:
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range.
Resumo:
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
Resumo:
Immediate loading of dental implants shortens the treatment time and makes it possible to give the patient an esthetic appearance throughout the treatment period. Placement of dental implants requires precise planning that accounts for anatomic limitations and restorative goals. Diagnosis can be made with the assistance of computerized tomographic scanning, but transfer of planning to the surgical field is limited. Recently, novel CAD/CAM techniques such as stereolithographic rapid prototyping have been developed to build surgical guides in an attempt to improve precision of implant placement. The aim of this case report was to show a modified surgical template used throughout implant placement as an alternative to a conventional surgical guide.
Resumo:
The optimal formulation for the preparation of amaranth flour films plasticized with glycerol and sorbitol was obtained by a multi-response analysis. The optimization aimed to achieve films with higher resistance to break, moderate elongation and lower solubility in water. The influence of plasticizer concentration (Cg, glycerol or Cs, sorbitol) and process temperature (Tp) on the mechanical properties and solubility of the amaranth flour films was initially studied by response surface methodology (RSM). The optimized conditions obtained were Cg 20.02 g glycerol/100 g flour and Tp 75 degrees C, and Cs 29.6 g sorbitol/100 g flour and Tp 75 degrees C. Characterization of the films prepared with these formulations revealed that the optimization methodology employed in this work was satisfactory. Sorbitol was the most suitable plasticizer. It furnished amaranth flour films that were more resistant to break and less permeable to oxygen, due to its greater miscibility with the biopolymers present in the flour and its lower affinity for water. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
The South American (SA) rainy season is studied in this paper through the application of a multivariate Empirical Orthogonal Function (EOF) analysis to a SA gridded precipitation analysis and to the components of Lorenz Energy Cycle (LEC) derived from the National Centers for Environmental Prediction (NCEP) reanalysis. The EOF analysis leads to the identification of patterns of the rainy season and the associated mechanisms in terms of their energetics. The first combined EOF represents the northwest-southeast dipole of the precipitation between South and Central America, the South American Monsoon System (SAMS). The second combined EOF represents a synoptic pattern associated with the SACZ (South Atlantic convergence zone) and the third EOF is in spatial quadrature to the second EOF. The phase relationship of the EOFs, as computed from the principal components (PCs), suggests a nonlinear transition from the SACZ to the fully developed SAMS mode by November and between both components describing the SACZ by September-October (the rainy season onset). According to the LEC, the first mode is dominated by the eddy generation term at its maximum, the second by both baroclinic and eddy generation terms and the third by barotropic instability previous to the connection to the second mode by September-October. The predominance of the different LEC components at each phase of the SAMS can be used as an indicator of the onset of the rainy season in terms of physical processes, while the existence of the outstanding spectral peaks in the time dependence of the EOFs at the intraseasonal time scale could be used for monitoring purposes. Copyright (C) 2009 Royal Meteorological Society
Resumo:
This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.