894 resultados para model with default Vasicek model and Cir model for the short rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steady state multi-segmented heat transfer model of the human upper limbs was developed. The main purpose was to evaluate the impact of blood flow through superficial veins and subcutaneous vascular structures in the palm of the hands over the heat transfer between the limbs and the environment. The distinguishing feature of the model is the inclusion of a detailed circulatory network composed of vessels with diameter larger than 1 mm. The model was validated by comparing its results from exposures to a hot, a neutral, and a cold environment to experimental data presented in the literature. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The link between lower and upper airways has been reported since the beginning of 1800s. They share the same pseudostratified ciliated columnar epithelium lining and the concept of one airway, one disease is quite well widespread. Nasal polyposis and asthma share basically the same inflammatory process: predominant infiltration of eosinophils, mucus cell hyperplasia, edema, thickened basal membrane, polarization for Th2 cell immune response, similar pro-inflammatory mediators are increased, for example cysteinyl leukotrienes. If the lower and upper airways share a lot of common epithelial structural features so why is the edema in the nasal mucosa able to increase so much the size of the mucosa to the point of developing polyps? The article tries to underline some differences between the nasal and the bronchial mucosa that could be implicated in this aberrant change from normal mucosa to polyps. This paper creates the concept that there are no polyps with the features of nasal polyposis disease in the lower airway and through it is developed the hypothesis of the nasal polyps origin could partially lie on the difference between the upper and lower airway histology. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical application of human embryonic stem cells will be possible, when cell lines are created under xeno-free and defined conditions. We aimed to establish methodologies for parthenogenetic activation, culture to blastocyst and mechanical isolation of the inner cell mass (ICM) using bovine oocytes, as a model for derivation and proliferation of human embryonic stem cells under defined xeno-free culture conditions. Cumulus-oocyte-complexes were in vitro matured and activated using Ca(2+)Ionophore and 6-DMAP or in vitro fertilized (IVF). Parthenotes and biparental embryos were cultured to blastocysts, when their ICM was mechanically isolated and placed onto a substrate of fibronectin in StemProA (R) medium. After attachment, primary colonies were left to proliferate and stained for pluripotency markers, alkaline phosphatase and Oct-4. Parthenogenesis and fertilization presented significantly different success rates (91 and 79 %, respectively) and blastocyst formation (40 and 43 %, respectively). ICMs from parthenogenetic and IVF embryos formed primary and expanded colonies at similar rates (39 % and 33 %, respectively). Six out of eight parthenogenetic colonies tested positive for alkaline phosphatase. Three colonies were analyzed for Oct-4 and they all tested positive for this pluripotency marker. Our data show that Ca2+ Ionophore, and 6-DMAP are efficient in creating large numbers of blastocysts to be employed as a model for human oocyte activation and embryo development. After mechanical isolation, parthenogetic derived ICMs showed a good rate of derivation in fibronectin and Stem-Pro forming primary and expanded colonies of putative embryonic stem cells. This methodology may be a good strategy for parthenogenetic activation of discarded human oocytes and derivation in defined conditions for future therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seeking alternatives for the economic system to face the several crises it has gone through lately (electrical power, cultural, financing and technological) brought about a new market involving the Kyoto Protocol signatory countries: the carbon market. The present article aims at assessing the carbon market institutional issue in Brazil by identifying the risks and opportunities inherent to the institutional agent characteristics and to that market rules. The research methodology was bibliographic and based on the analysis of the Securities and Exchange Commission of Brazil (Comissao de Valores Mobiliarios and Bolsa Mercantil de Valores) contents. Its theoretical basis rests on concepts of the institution and the new institutional economy. The results show that in spite of the risks and institutional problems it involves, the carbon market is promising due to the opportunities create by new technologies and energies developed to achieve and sustain the capitalist system new cycle, addressed to produce a clean development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DA is supported by a CAPES PhD grant and ACR is the recipient of research grants by CNPq and FAPESP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle tracking of microbeads attached to the cytoskeleton (CSK) reveals an intermittent dynamic. The mean squared displacement (MSD) is subdiffusive for small Δt and superdiffusive for large Δt, which are associated with periods of traps and periods of jumps respectively. The analysis of the displacements has shown a non-Gaussian behavior, what is indicative of an active motion, classifying the cells as a far from equilibrium material. Using Langevin dynamics, we reconstruct the dynamic of the CSK. The model is based on the bundles of actin filaments that link themself with the bead RGD coating, trapping it in an harmonic potential. We consider a one- dimensional motion of a particle, neglecting inertial effects (over-damped Langevin dynamics). The resultant force is decomposed in friction force, elastic force and random force, which is used as white noise representing the effect due to molecular agitation. These description until now shows a static situation where the bead performed a random walk in an elastic potential. In order to modeling the active remodeling of the CSK, we vary the equilibrium position of the potential. Inserting a motion in the well center, we change the equilibrium position linearly with time with constant velocity. The result found exhibits a MSD versus time ’tau’ with three regimes. The first regime is when ‘tau’ < ‘tau IND 0’, where ‘tau IND 0’ is the relaxation time, representing the thermal motion. At this regime the particle can diffuse freely. The second regime is a plateau, ‘tau IND 0’ < ‘tau’ < ‘tau IND 1’, representing the particle caged in the potential. Here, ‘tau IND 1’ is a characteristic time that limit the confinement period. And the third regime, ‘tau’ > ‘tau IND 1’, is when the particles are in the superdiffusive behavior. This is where most of the experiments are performed, under 20 frames per second (FPS), thus there is no experimental evidence that support the first regime. We are currently performing experiments with high frequency, up to 100 FPS, attempting to visualize this diffusive behavior. Beside the first regime, our simple model can reproduce MSD curves similar to what has been found experimentally, which can be helpful to understanding CSK structure and properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using  Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the light of what happened in 2010 and 2011, a lot of European countries founded themselves in a difficult position where all the credit rating agencies were downgrading debt states. Problem of solvency and guarantees on the states' bond were perceived as too risky for a Monetary Union as Europe is. Fear of a contagion from Greece as well was threatening the other countries as Italy, Spain, Portugal and Ireland; while Germany and France asked for a division between risky and riskless bond in order to feel more safe. Our paper gets inspiration by Roch and Uhlig (2011), it refers to the Argentinian case examined by Arellano (2008) and examine possible interventions as monetization or bailout as proposed by Cole and Kehoe (2000). We propose a model in which a state defaults and cannot repay a fraction of the old bond; but contrary to Roch and Uhlig that where considering a one-time cost of default we consider default as an accumulation of losses, perceived as unpaid fractions of the old debts. Our contributions to literature is that default immediately imply that economy faces a bad period and, accumulating losses, government will be worse-off. We studied a function for this accumulation of debt period by period, in order to get an idea of the magnitude of this waste of resources that economy will face when experiences a default. Our thesis is that bailouts just postpone the day of reckoning (Roch, Uhlig); so it's better to default before accumulate a lot of debts. What Europe need now is the introduction of new reforms in a controlled default where the Eurozone will be saved in its whole integrity and a state could fail with the future promise of a resurrection. As experience show us, governments are not interested into reducing debts since there are ECB interventions. That clearly create a distortion between countries in the same monetary union, giving to the states just an illusion about their future debtor position.