921 resultados para measurement of noise
Resumo:
STUDY DESIGN.: Cadaver study. OBJECTIVE.: To determine bone strength in vertebrae by measuring peak breakaway torque or indentation force using custom-made pedicle probes. SUMMARY OF BACKGROUND DATA.: Screw performance in dorsal spinal instrumentation is dependent on bone quality of the vertebral body. To date no intraoperative measuring device to validate bone strength is available. Destructive testing may predict bone strength in transpedicular instrumentations in osteoporotic vertebrae. Insertional torque measurements showed varying results. METHODS.: Ten human cadaveric vertebrae were evaluated for bone mineral density (BMD) measurements by quantitative computed tomography. Peak torque and indentation force of custom-made probes as a measure for mechanical bone strength were assessed via a transpedicular approach. The results were correlated to regional BMD and to biomechanical load testing after pedicle screw implementation. RESULTS.: Both methods generated a positive correlation to failure load of the respective vertebrae. The correlation of peak breakaway torque to failure load was r = 0.959 (P = 0.003), therewith distinctly higher than the correlation of indentation force to failure load, which was r = 0.690 (P = 0.040). In predicting regional BMD, measurement of peak torque also performed better than that of indentation force (r = 0.897 [P = 0.002] vs. r = 0.777 [P = 0.017]). CONCLUSION.: Transpedicular measurement of peak breakaway torque is technically feasible and predicts reliable local bone strength and implant failure for dorsal spinal instrumentations in this experimental setting.
Resumo:
OBJECTIVE To determine the practicability and accuracy of central corneal thickness (CCT) measurements in living chicks utilizing a noncontact, high-speed optical low-coherence reflectometer (OLCR) mounted on a slit lamp. ANIMALS STUDIED Twelve male chicks (Gallus gallus domesticus). Procedures Measurements of CCT were obtained in triplicate in 24 eyes of twelve 1-day-old anaesthetized chicks using OLCR. Every single measurement taken by OLCR consisted of the average result of 20 scans obtained within seconds. Additionally, corneal thickness was determined histologically after immersion fixation in Karnovsky's solution alone (20 eyes) or with a previous injection of the fixative into the anterior chamber before enucleation (4 eyes). RESULTS Central corneal thickness measurements using OLCR in 1-day-old living chicks provide a rapid and feasible examination technique. Mean CCT measured with OLCR (189.7 ± 3.34 μm) was significantly lower than histological measurements (242.1 ± 47.27 μm) in eyes with fixation in Karnovsky's solution (P = 0.0005). In eyes with additional injection of Karnovsky's fixative into the anterior chamber, mean histologically determined CCT was 195.2 ± 8.25 μm vs. 191.9 ± 8.90 μm with OLCR. A trend for a lower variance was found compared to the eyes that had only been immersion fixed. CONCLUSION Optical low-coherence reflectometry is an accurate examination technique to measure in vivo CCT in the eye of newborn chicks. The knowledge of the thickness of the chick cornea and the ability to obtain noninvasive, noncontact measurements of CCT in the living animal may be of interest for research and development of eye diseases in chick models.
Resumo:
Despite the increased use of intracranial neuromonitoring during experimental subarachnoid hemorrhage (SAH), coordinates for probe placement in rabbits are lacking. This study evaluates the safety and reliability of using outer skull landmarks to identify locations for placement of cerebral blood flow (CBF) and intraparenchymal intracranial pressure (ICP) probes. Experimental SAH was performed in 17 rabbits using an extracranial-intracranial shunt model. ICP probes were placed in the frontal lobe and compared to measurements recorded from the olfactory bulb. CBF probes were placed in various locations in the frontal cortex anterior to the coronary suture. Insertion depth, relation to the ventricular system, and ideal placement location were determined by post-mortem examination. ICP recordings at the time of SAH from the frontal lobe did not differ significantly from those obtained from the right olfactory bulb. Ideal coordinates for intraparenchymal CBF probes in the left and right frontal lobe were found to be located 4.6±0.9 and 4.5±1.2 anterior to the bregma, 4.7±0.7mm and 4.7±0.5mm parasagittal, and at depths of 4±0.5mm and 3.9±0.5mm, respectively. The results demonstrate that the presented coordinates based on skull landmarks allow reliable placement of intraparenchymal ICP and CBF probes in rabbit brains without the use of a stereotactic frame.
Resumo:
Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status in fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and, in particular clinical situations such as severe growth restriction or volume overload, also of venous vessels close to the heart or of flow patterns in the heart are being used to gauge the level of compensation in a fetus. Quantitative assessment of the driving force of the fetal circulation, the cardiac output, however, remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measures of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.
Resumo:
The aim of this pilot study was to evaluate the noise level in an operating theatre as a possible surrogate marker for intraoperative behaviour, and to detect any correlation between sound level and subsequent surgical-site infection (SSI).