824 resultados para mathematical regression
Resumo:
In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.
Resumo:
This paper proposes a filter based on a general regression neural network and a moving average filter, for preprocessing half-hourly load data for short-term multinodal load forecasting, discussed in another paper. Tests made with half-hourly load data from nine New Zealand electrical substations demonstrate that this filter is able to handle noise, missing data and abnormal data. © 2011 IEEE.
Resumo:
Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.
Resumo:
This paper presents three methods for automatic detection of dust devils tracks in images of Mars. The methods are mainly based on Mathematical Morphology and results of their performance are analyzed and compared. A dataset of 21 images from the surface of Mars representative of the diversity of those track features were considered for developing, testing and evaluating our methods, confronting their outputs with ground truth images made manually. Methods 1 and 3, based on closing top-hat and path closing top-hat, respectively, showed similar mean accuracies around 90% but the time of processing was much greater for method 1 than for method 3. Method 2, based on radial closing, was the fastest but showed worse mean accuracy. Thus, this was the tiebreak factor. © 2011 Springer-Verlag.
Resumo:
This paper introduces an indirect estimate for the coefficients of distribution, hydrodynamic dispersion and retardation for contaminants commonly encountered in sanitary landfills and their liners, such as Cu2+ and K+; this estimate is based on the relationship between concentration and certain physical characteristics of typical Brazilian soils. The results of previous studies investigating the migration of contaminants were used to develop mathematical expressions from multiple non-linear regressions. Using minimal squares regression, this transport was linked to various combinations of contaminant concentration and both structural and textural characteristics of the porous medium. Various combinations of characteristics and concentrations were investigated, with a mathematical expression obtained for each. The relationship between percentage of clay and the contaminant content proved to be the most closely correlated with actual transport parameters, with coefficients close to one.
Resumo:
According to Peirce one of the most important philosophical problems is continuity. Consequently, he set forth an innovative and peculiar approach in order to elucidate at once its mathematical and metaphysical challenges through proper non-classical logical reasoning. I will restrain my argument to the definition of the different types of discrete collections according to Peirce, with a special regard to the phenomenon called premonition of continuity (Peirce, 1976, Vol. 3, p. 87, c. 1897). © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Includes bibliography
Resumo:
This study was undertaken to characterize the effects of monotonous training at lactate minimum (LM) intensity on aerobic and anaerobic performances; glycogen concentrationsin the soleus muscle, the gastrocnemius muscle and the liver; and creatine kinase (CK), free fatty acids and glucose concentrations in rats. The rats were separated into trained (n =10), baseline (n = 10) and sedentary (n=10) groups. The trained group was submitted to the following: 60 min/day, 6 day/week and intensity equivalent to LM during the 12-week training period. The training volume was reduced after four weeks according to a sigmoid function. The total CK (U/L) increased in the trained group after 12 weeks (742.0±158.5) in comparison with the baseline (319.6±40.2) and the sedentary (261.6+42.2) groups. Free fatty acids and glycogen stores (liver, soleus muscle and gastrocnemius muscle) increased after 12 weeks of monotonous training but aerobic and anaerobic performances were unchanged in relation to the sedentary group. The monotonous training at LM increased the level of energy substrates, unchanged aerobic performance, reduced anaerobic capacity and increased the serum CK concentration; however, the rats did not achieve the predicted training volume.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Purpose. We quantified the main sequence of spontaneous blinks in normal subjects and Graves' disease patients with upper eyelid retraction using a nonlinear and two linear models, and examined the variability of the main sequence estimated with standard linear regression for 10-minute periods of time. Methods. A total of 20 normal subjects and 12 patients had their spontaneous blinking measured with the magnetic search coil technique when watching a video during one hour. The main sequence was estimated with a power-law function, and with standard and trough the origin linear regressions. Repeated measurements ANOVA was used to test the mean sequence stability of 10-minute bins measured with standard linear regression. Results. In 95% of the sample the correlation coefficients of the main sequence ranged from 0.60 to 0.94. Homoscedasticity of the peak velocity was not verified in 20% of the subjects and 25% of the patients. The power-law function provided the best main sequence fitting for subjects and patients. The mean sequence of 10-minute bins measured with standard linear regression did not differ from the one-hour period value. For the entire period of observation and the slope obtained by standard linear regression, the main sequence of the patients was reduced significantly compared to the normal subjects. Conclusions. Standard linear regression is a valid and stable approximation for estimating the main sequence of spontaneous blinking. However, the basic assumptions of the linear regression model should be examined on an individual basis. The maximum velocity of large blinks is slower in Graves' disease patients than in normal subjects. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Dosage and frequency of treatment schedules are important for successful chemotherapy. However, in this work we argue that cell-kill response and tumoral growth should not be seen as separate and therefore are essential in a mathematical cancer model. This paper presents a mathematical model for sequencing of cancer chemotherapy and surgery. Our purpose is to investigate treatments for large human tumours considering a suitable cell-kill dynamics. We use some biological and pharmacological data in a numerical approach, where drug administration occurs in cycles (periodic infusion) and surgery is performed instantaneously. Moreover, we also present an analysis of stability for a chemotherapeutic model with continuous drug administration. According to Norton & Simon [22], our results indicate that chemotherapy is less eficient in treating tumours that have reached a plateau level of growing and that a combination with surgical treatment can provide better outcomes.
Resumo:
In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..
Resumo:
The aim of this work was to generate mathematical models capable of identifying photosynthetic pigments and soluble proteins from the leaves of Jatropha curcas using the relationship between classical readings performed by spectrophotometry and the chlorophyll meter, ClorofiLOG ® 1030. The work was conducted at Embrapa Cotton, in the city of Campina Grande, state of Paraíba, Brazil. For indirect analysis, portable equipment was used to read leaf discs at different stages of development. The chlorophyll in these discs was then determined using a classical method, while the Bradford method was used to determine soluble proteins. The data were subjected to analysis of variance and regression analyses, in which the readings obtained using the portable chlorophyll meter were the dependent variables and the photosynthetic pigments and soluble protein determined by the classical method the independents variables. The results indicated that with the exception of chlorophyll b and soluble protein, the mathematical models obtained with the portable chlorophyll ClorofiLOG ® 1030 can be used to estimate the concentration of photosynthetic pigments with high precision, thus saving time and the chemical reagents required for conventional procedures.
Resumo:
An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, αT, is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950-1125 GeV are excluded depending on the assumed model. For the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first- or second-generation squark, increasing to 600 GeV for bottom squarks. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.