999 resultados para magnetic rigidity constraint
Resumo:
The magnetic fields produced by electrical coils are designed for P-doped Si crystal growth in a floating full zone in microgravity environment. The fields are designed specially to reduce the how near the free surface and then in the melt zone by adjusting the coil positions near the melt zone. The effects of the designed magnetic fields on reducing the Row velocity and the non-uniformity of the concentration distribution in the melt zone are better than those of the case of a uniform longitudinal magnetic field, obtained by numerical simulation. It is expected to improve the radial macro-segregation and reduce the convection in the crystal growth at the same time by using the designed magnetic field.
Resumo:
This paper proposes to use an extended Gaussian Scale Mixtures (GSM) model instead of the conventional ℓ1 norm to approximate the sparseness constraint in the wavelet domain. We combine this new constraint with subband-dependent minimization to formulate an iterative algorithm on two shift-invariant wavelet transforms, the Shannon wavelet transform and dual-tree complex wavelet transform (DTCWT). This extented GSM model introduces spatially varying information into the deconvolution process and thus enables the algorithm to achieve better results with fewer iterations in our experiments. ©2009 IEEE.
Resumo:
A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.
Resumo:
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B-2(0) and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B-2(0) approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
Resumo:
The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.
Resumo:
The magnetic properties of melt-processed YBa2Cu3O7-δ thick films have been measured and correlated with features in the microstructure at 4.2 and 77 K for film thicknesses between 50 and 140 μm. A qualitative model for the volume magnetization of the films at 4.2 K is proposed in terms of the individual contributions from intra H-S grain, inter H-S grain and granular Jc components.
Resumo:
Transport critical current measurements have been carried out on melt-processed thick films of YBa2Cu3O7-δ on yttria-stabilized zirconia in fields of up to 8 T both within grains and across grain boundaries. These measurements yield Jc values of ∼3000 A cm-2 at 4.2 K and zero magnetic field and 400 A cm -2 at 77 K and zero magnetic field, taking the entire sample width as the definitive dimension. Optical and scanning electron microscopy reveals that the thick-film grains consist typically of a central "hub" region ∼50 μm in diameter, which is well connected to radial subgrains or "spokes" which extend ∼1 mm to define the complete grain structure. Attempts have been made to correlate the transport measurements of inter- and intra-hub-and-spoke (H-S) critical current with values of this parameter derived previously from magnetization measurements. Analysis of the transport measurements indicates that current flow through H-S grains is constrained to paths along the spokes via the grain hub. Taking the size of the hub as the definitive dimension yields an intra-H-S grain Jc of ∼60 000 A cm-2 at 4.2 K and 0 T, which is in reasonable agreement with the magnetization data. Experiments in which the hub is removed from individual grains confirm that this feature determines critically the J c of the film.
Resumo:
Using numerical micromagnetics we have studied the ground state magnetization distribution of square planar ferromagnetic elements ("nanostructures"). As the element size is reduced from 250 to 2 nm at constant thickness (2-35 nm), we find that the magnetization distribution undergoes up to three phase transitions involving as many as three different near single domain states. One of these phase transitions is analogous to the reorientation phase transition observed in continuous ultrathin magnetic films. © 1998 American Institute of Physics.
Resumo:
Arrays of nanomagnets were fabricated out of Ni80Fe14Mo5 in the lateral size range 500-30nm and the thickness range 3-20nm. Elliptical, triangular, square, pentagonal and circular geometries were all considered. The magnetic properties of these nanomagnets were probed rapidly and non-invasively using a high sensitivity magneto-optical method.
Resumo:
We have fabricated using high-resolution electron beam lithography circular magnetic particles (nanomagnets) of diameter 60 nm and thickness 7 nm out of the common magnetic alloy supermalloy. The nanomagnets were arranged on rectangular lattices of different periods. A high-sensitivity magneto-optical method was used to measure the magnetic properties of each lattice. We show experimentally how the magnetic properties of a lattice of nanomagnets can be profoundly changed by the magnetostatic interactions between nanomagnets within the lattice. We find that simply reducing the lattice spacing in one direction from 180 nm down to 80 nm (leaving a gap of only 20 nm between edges) causes the lattice to change from a magnetically disordered state to an ordered state. The change in state is accompanied by a peak in the magnetic susceptibility. We show that this is analogous to the paramagnetic-ferromagnetic phase transition which occurs in conventional magnetic materials, although low-dimensionality and kinetic effects must also be considered.
Resumo:
This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.
Resumo:
Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The glass transition temperature, not revealed by DSC, is alternatively determined by DMTA via storage modulus E' and loss modulus E" measurement to be 498 K at a heating rate of 0.167 K s (-1). The calculated reduced glass transition temperature (T-g/T-m) is 0.63. The large value of T-g/T-m of this alloy is consistent with its good glass-forming ability. The crystallization process of the metallic glass is concluded as follows: amorphous --> amorphous + metastable FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of the amorphous phase. (C) 2002 Elsevier Science B.V. All rights reserved.