897 resultados para low carbon steel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for environmental analysis has been mainly focused on qualitative analysis of high-mass molecules, such as toxins, humic acid, and microorganisms. Herein,we describe a novel MALDI-TOF-MS method with a matrix of oxidized carbon nanotubes for analysis of low-mass compounds in environmental samples. A number of chemicals in the environment were qualitatively analyzed by the present method, and it was found that most of them, especially the highly polar chemicals, were measurable with high sensitivity. With the intrinsic ability to measure high-mass chemicals, this method can compensate for the current shortage of methods for environmental analysis for the measurement of highly polar or high-mass chemicals. For sample analysis, arsenic speciation in Chinese traditional medicines was qualified and diphenylolpropane in water samples was quantified. With the relatively high tolerance of the method to interfering molecules, a simple pretreatment or even no pretreatment could be employed before MS detection. Furthermore, this method can be employed in a high-throughput format.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The damage induced in supercoiled plasmid DNA molecules by low energy (< 1 keV u-1) singly and doubly charged carbon ions has been investigated as a function of ion exposure. The production of short linear fragments through multiple double strand breakage is indicated and exponential exposure responses for each of the topoisomers are presented. The damage produced by C2+ is apparent at much lower ion exposures that with C+.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A maraging steel with a composition of Fe–12·94Ni–1·61Al–1·01Mo–0·23Nb (wt-%) was investigated. Optical, scanning electron and transmission electron microscopy and X-ray diffraction analysis were employed to study the microstructure of the steel after different aging periods at temperatures of 450–600°C. Hardness and Charpy impact toughness of the steel were measured. The study of microstructure and mechanical properties showed that nanosized precipitates were formed homogeneously during the aging process, which resulted in high hardness. As the aging time is prolonged, precipitates grow and hardness increases. Fractography of the as forged steel has shown mixed ductile and brittle fracture and has indicated that the steel has good toughness. Relationships among heat treatment, microstructure and mechanical properties are discussed. Further experiments using tensile testing and impact testing for aged steel were carried out.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Austenitization with lower temperature and intercritical annealing were introduced in the treatment of a maraging steel with a composition of Fe–12.94Ni–1.61Al–1.01Mo–0.23Nb (wt.%). Scanning electron microscopy was employed to study the microstructure after austenitization at 950 °C and intercritical annealing, followed by aging at 485 and 600 °C. X-ray diffraction (XRD) analysis was applied to evaluate the formation of retained or reverted austenite. Thermodynamic calculation was employed to calculate equilibrium phase mole fractions. Hardness and Charpy impact toughness of the steel were measured. Intercritical annealing treatments did not result in significant increase of hardness either before or after aging. The Charpy impact toughness of the alloy in aged condition was enhanced after austenitization at 950 °C. No austenite was observed in XRD. However, suspected reverted austenite was found after austenitization at 950 °C followed by aging at 600 °C for 4 h. Relationships among heat treatment, microstructure and mechanical properties are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Densities and viscosities of the ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [C4C1Im][C8SO4] were measured as a function of temperature between 313 K and 395 K. Solubilities of hydrogen and carbon dioxide were determined, between 283 K and 343 K, and at pressures close to atmospheric in [C4C1Im][C 8SO4] and in another ionic liquid based on the alkylsulfate anion-1-ethyl-3-methylimidazolium ethylsulfate, [C 2C1Im][C2SO4]. Density and viscosity were measured using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific with accuracies of 10-3 g cm -3 and 1%, respectively. Solubilities were obtained using an isochoric saturation technique and, from the variation of solubility with temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs energy, the enthalpy, and the entropy, are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © The Royal Society of Chemistry.