873 resultados para linear mixing model
Resumo:
The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23 degrees W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The recent experimental results on neutrino oscillation and on muonium-antimuonium conversion require extension of the minimal 3-3-1 model. We review the constraints imposed on the model by these measurements and suggest a pattern of leptonic mixing, with charged leptons in a non-diagonal basis, which accounts for the neutrino physics and circumvents the tight muonium-antimuonium bounds on the model. We also illustrate a scenario where this pattern could be realized.
Resumo:
We perform an update of our previous analysis of the constraints on possible deviations of Hb (b) over bar coupling parametrized as (m(b)/v)(a+igamma(5)b), arising from a scalar-pseudoscalar mixing, where the process e(+)e(-)-->b (b) over bar nu(ν) over bar was used. In this paper we include a complete simulation of the process e(+)e(-)-->b (b) over bare(+)e(-) and combine these results to obtain tighter bounds on the deviations of the parameters a and b from their standard model values that could be measured at the Next Linear Collider.
Resumo:
In the minimal 3-3-1 model charged leptons come in a nondiagonal basis. Moreover, the Yukawa interactions of the model lead to a non-hermitian charged lepton mass matrix. In other words, the minimal 3-3-1 model presents a very complex lepton mixing. In view of this we check rigorously if the possible textures of the lepton mass matrices allowed by the minimal 3-3-1 model can lead or not to the neutrino mixing required by the recent experiments in neutrino oscillation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An exactly solvable quantum field theory (QFT) model of Lee type is constructed to study how neutrino flavor eigenstates are created through interactions and how the localization properties of neutrinos follows from the parent particle that decays. The two-particle states formed by the neutrino and the accompanying charged lepton can be calculated exactly as well as their creation probabilities. We can show that the coherent creation of neutrino flavor eigenstates follows from the common negligible contribution of neutrino masses to their creation probabilities. on the other hand, it is shown that it is not possible to associate a well-defined flavor to coherent superpositions of charged leptons.
Resumo:
We reassess the method of the linear delta expansion for the calculation of effective potentials in superspace, by adopting the improved version of the super-Feynman rules in the framework of the O'Raifeartaigh model for spontaneous supersymmetry breaking. The effective potential is calculated using both the fastest apparent convergence and the principle of minimal sensitivity criteria and the consistency and efficacy of the method are checked in deriving the Coleman-Weinberg potential.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article deals with some methodologies for economic and technical evaluations of cogeneration projects proposed by several authors. A discussion on design philosophy applied to thermal power plants leads to the decision problem of a conflicting, multiobjective formulation that includes the most important parameters. This model is formulated to help decision makers and designers in choosing compromise values for included parameters. (C) 1997 Elsevier B.V. Ltd.
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
We use the Walecka model to investigate the influence of the charge symmetry breaking ρ0-ω mixing interaction on the neutron-proton self-energy difference in nuclear matter. Using 2mρ〈ρ0|H|ω〉 = -4500 MeV2, and employing the Dirac-Hartree-Fock approximation, we find that the neutron-proton self-energy difference is a decreasing function of the nuclear matter density, and that it has a value of the order of 700 keV at the normal density. The results indicate that the Nolen-Schiffer anomaly might be explained by means of relativistic nuclear models in a similar way as it is explained by means of non-relativistic models.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)