963 resultados para laser communications satellite-based laser submerged platform Monte Carlo simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65C05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the case study is to express the delayed repair time impact on the revenues and profit in numbers with the example of the outage of power plant units. Main steps of risk assessment: • creating project plan suitable for risk assessment • identification of the risk factors for each project activities • scenario-analysis based evaluation of risk factors • selection of the critical risk factors based on the results of quantitative risk analysis • formulating risk response actions for the critical risks • running Monte-Carlo simulation [1] using the results of scenario-analysis • building up a macro which creates the connection among the results of the risk assessment, the production plan and the business plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A felelős vállalatirányítás egyik stratégiai jelentőségű tényezője a vállalati szintű kockázatkezelés, mely napjaink egyik legnagyobb kihívást jelentő területe a vállalatvezetés számára. A hatékony vállalati kockázatkezelés nem valósulhat meg kizárólag az általános, nemzetközi és hazai szakirodalomban megfogalmazott kockázatkezelési alapelvek követése mentén, a kockázatkezelési rendszer kialakítása során figyelembe kell venni mind az iparági, mind az adott vállalatra jellemző sajátosságokat. Mindez különösen fontos egy olyan speciális tevékenységet folytató vállalatnál, mint a villamosenergia-ipari átviteli rendszerirányító társaság (transmission system operator, TSO). A cikkben a magyar villamosenergia-ipari átviteli rendszerirányító társasággal együttműködésben készített kutatás keretében előálló olyan komplex elméleti és gyakorlati keretrendszert mutatnak be a szerzők, mely alapján az átviteli rendszerirányító társaság számára kialakítottak egy új, területenként egységes kockázatkezelési módszertant (fókuszban a kockázatok azonosításának és számszerűsítésének módszertani lépéseivel), mely alkalmas a vállalati szintű kockázati kitettség meghatározására. _______ This study handles one of today’s most challenging areas of enterprise management: the development and introduction of an integrated and efficient risk management system. For companies operating in specific network industries with a dominant market share and a key role in the national economy, such as electricity TSO’s, risk management is of stressed importance. The study introduces an innovative, mathematically and statistically grounded as well as economically reasoned management approach for the identification, individual effect calculation and summation of risk factors. Every building block is customized for the organizational structure and operating environment of the TSO. While the identification phase guarantees all-inclusivity, the calculation phase incorporates expert techniques and Monte Carlo simulation and the summation phase presents an expected combined distribution and value effect of risks on the company’s profit lines based on the previously undiscovered correlations between individual risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Monte Carlo method is accurate and is relatively simple to implement for the solution of problems involving complex geometries and anisotropic scattering of radiation as compared with other numerical techniques. In addition, differently of what happens for most of numerical techniques, for which the associated simulations computational time tends to increase exponentially with the complexity of the problems, in the Monte Carlo the increase of the computational time tends to be linear. Nevertheless, the Monte Carlo solution is highly computer time consuming for most of the interest problems. The Multispectral Energy Bundle model allows the reduction of the computational time associated to the Monte Carlo solution. The referred model is here analyzed for applications in media constituted for nonparticipating species and water vapor, which is an important emitting species formed during the combustion of hydrocarbon fuels. Aspects related to computer time optimization are investigated the model solutions are compared with benchmark line-by-line solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the phase diagram of the double exchange model, with antiferromagnetic interactions, in a cubic lattice both at zero and finite temperature. There is a rich variety of magnetic phases, combined with regions where phase separation takes place. We identify phases, intrinsic to the cubic lattice, which are stable for realistic values of the interactions and dopings. Some of these phases break chiral symmetry, leading to unusual features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.