896 resultados para kidney transplant
Resumo:
We aimed to determine which patients undergoing tricuspid valve (TV) surgery are at increased risk for acute kidney injury (AKI).
Resumo:
Concern regarding recurrence of pre-transplant (Tx) malignancy has disqualified patients from Tx. Because this has been poorly studied in lung and heart Tx recipients our aim was to investigate the influence of pre-Tx malignancy on post-Tx recurrence and long-term survival, focusing on pre-operative cancer-free intervals.
Resumo:
The NOCTET (NOrdic Certican Trial in HEart and lung Transplantation) trial demonstrated that everolimus improves renal function in maintenance thoracic transplant (TTx) recipients. Nevertheless, introduction of everolimus is not recommended for patients with advanced renal failure. We evaluated NOCTET data to assess everolimus introduction amongst TTx recipients with advanced renal failure.
Resumo:
Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.
Resumo:
Specialized microenvironments have been known to strongly influence stem cell fate in hematopoiesis. The interplay between osteolineage cells, specifically the mature osteoblast, and the hematopoietic stem cell (HSC) niche have been of particular note. Recently, preliminary unpublished data obtained in the Scadden laboratory suggests the critical role of the osteoblast in regulating T cells. The goal of this project was to initially determine whether stimulating the osteoblast in the HSC niche leads to increased immune reconstitution after hematopoietic stem cell transplant (HSCT). These results indicated that while bone manipulation pre-transplant may have a positive effect on T and B lymphocyte cell recovery, bone manipulation post-transplant seems to have a suppressing effect. Additionally, stimulation of the osteoblast may have an inhibitory effect on the regeneration of GR1+ myeloid cells. Based on these results, we then sought to determine how osteoprotection pre-HSCT modifies the kinetics of graft-versus-host disease (GVHD) and impacts the regeneration of immune cells. The data from this phase of my experiment suggests a possible immediate benefit in stimulation of the osteoblast in response to GVHD prior to HSCT. The overall results from my thesis project demonstrate a promising relationship between pre-HSCT stimulation of the osteoblast and lymphocyte recovery post-HSCT. ¿
Resumo:
We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.
Resumo:
Transplantation is the treatment of choice for many different organ failures. Despite growing experience in surgery and immunosuppression protocols, the long-term mortality of the procedure remains much higher than in the general population. Second only to cardiovascular diseases as the cause of death in organ transplant recipients, cancer is now known to be at least partly related to the immunosuppression regimen. Nevertheless, if calcineurin inhibitors have a demonstrated pro-oncogenic effect, other classes, such as mTOR inhibitors, are antiproliferative, and even demonstrated as an efficient therapy in some advanced oncological situations. Therefore, the adaptation of the therapy protocol evolves now towards an individualized medicine based on the risk factors of each transplant recipient in terms of cardiovascular, infectious and oncological diseases. As the first organ involved by tumor is the skin, many different guidelines have been published to try and adapt the therapy to the occurrence of a new lesion. If, for example, limited actinic keratosis or the first episode of a non-melanoma skin cancer usually requires no change of the immunosuppressive therapy, but a local specialized care and frequent clinical controls, more advanced lesions imply the adaptation of the drug regimen. In any case, the collaboration between general practitioners, dermatologists and the transplantation team is mandatory.
Resumo:
Solid organ transplant recipients (SOTR) have an increased risk of skin cancer due to their long-term immunosuppressive state. As the number of these patients is increasing, as well as their life expectancy, it is important to discuss the screening and management of skin cancer in this group of patients. The role of the dermatologist, in collaboration with the transplant team, is important both before transplantation, where patients are screened for skin lesions and the individual risk for skin cancer development is assessed, and after transplantation. Posttransplant management consists of regular dermatological consultations (the frequency depends on different factors discussed below), where early skin cancer screening and management, as well as patient education on sun protective behavior is taught and enforced. Indeed, SOTR are very sensitive to sun damage due to their immunosuppressive state, leading to cumulative sun damage which results in field cancerization with numerous lesions such as in situ squamous cell carcinoma, actinic keratosis and Bowen's disease. These lesions should be recognized and treated as early as possible. Therapeutic options discussed will involve topical therapy, surgical management, adjustment of the patient's immunosuppressive therapy (i.e. reduction of immunosuppression and/or switch to mammalian target of rapamycin inhibitors) and chemoprevention with the retinoid acitretin, which reduces the recurrence rate of squamous cell carcinoma. The dermatological follow-up of SOTR should be integrated into the comprehensive posttransplant care.
Resumo:
A variety of chronic kidney diseases tend to progress towards end-stage kidney disease. Progression is largely due to factors unrelated to the initial disease, including arterial hypertension and proteinuria. Intensive treatment of these two factors is potentially able to slow the progression of kidney disease. Blockers of the renin-angiotensin-aldosterone system, either converting enzyme inhibitors or angiotensin II receptor antagonists, reduce both blood pressure and proteinuria and appear superior to a conventional antihypertensive treatment regimen in preventing progression to end-stage kidney disease. The most recent recommendations state that in children with chronic kidney disease without proteinuria the blood pressure goal is the corresponding 75th centile for body length, age and gender; whereas the 50th centile should be aimed in children with chronic kidney disease and pathologically increased proteinuria.
Resumo:
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.
Resumo:
Animal studies suggest that renal tissue hypoxia plays an important role in the development of renal damage in hypertension and renal diseases, yet human data were scarce due to the lack of noninvasive methods. Over the last decade, blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), detecting deoxyhemoglobin in hypoxic renal tissue, has become a powerful tool to assess kidney oxygenation noninvasively in humans. This paper provides an overview of BOLD-MRI studies performed in patients suffering from essential hypertension or chronic kidney disease (CKD). In line with animal studies, acute changes in cortical and medullary oxygenation have been observed after the administration of medication (furosemide, blockers of the renin-angiotensin system) or alterations in sodium intake in these patient groups, underlining the important role of renal sodium handling in kidney oxygenation. In contrast, no BOLD-MRI studies have convincingly demonstrated that renal oxygenation is chronically reduced in essential hypertension or in CKD or chronically altered after long-term medication intake. More studies are required to clarify this discrepancy and to further unravel the role of renal oxygenation in the development and progression of essential hypertension and CKD in humans.
Resumo:
INTRODUCTION: Sepsis may impair mitochondrial utilization of oxygen. Since hepatic dysfunction is a hallmark of sepsis, we hypothesized that the liver is more susceptible to mitochondrial dysfunction than the peripheral tissues, such as the skeletal muscle. We studied the effect of prolonged endotoxin infusion on liver, muscle and kidney mitochondrial respiration and on hepatosplanchnic oxygen transport and microcirculation in pigs. METHODS: 20 anesthetized pigs were randomized to receive endotoxin or saline infusion for 24 hours. Muscle, liver and kidney mitochondrial respiration was assessed. Cardiac output (thermodilution), carotid, superior mesenteric and kidney arterial, portal venous (ultrasound Doppler) and microcirculatory blood flow (laser Doppler) were measured, and systemic and regional oxygen transport and lactate exchange were calculated. RESULTS: Endotoxin infusion induced hyperdynamic shock and impaired the glutamate- and succinate-dependent mitochondrial respiratory control ratio (RCR) in the liver (glutamate: endotoxemia: median [range] 2.8 [2.3-3.8] vs. controls: 5.3 [3.8-7.0]; p<0.001; succinate: endotoxemia: 2.9 [1.9-4.3] vs. controls: 3.9 [2.6-6.3] p=0.003). While the ADP:O ratio was reduced with both substrates, maximal ATP production was impaired only in the succinate-dependent respiration. Hepatic oxygen consumption and extraction, and liver surface laser Doppler blood flow remained unchanged. Glutamate-dependent respiration in the muscle and kidney was unaffected. CONCLUSIONS: Endotoxemia reduces the efficiency of hepatic but neither skeletal muscle nor kidney mitochondrial respiration, independent of regional and microcirculatory blood flow changes.
Resumo:
Despite the introduction of new immunosuppressive agents, a steady decline of functioning renal allografts after living donation is observed. Thus nonpharmacological strategies to prevent graft loss have to be reconsidered, including donor-specific transfusions (DST). We introduced a cyclosporine-based DST protocol for renal allograft recipients from living-related/unrelated donation. From 1993 to 2003, 200 ml of whole blood, or the respective mononuclear cells from the potential living donor were administered twice to all of our 61 recipient candidates. The transplanted subjects were compared with three groups of patients without DST from the Collaborative Transplant Study (Heidelberg, Germany) during a 6-year period. Six patients were sensitized without delay for a subsequent cadaveric kidney. DST patients had less often treatment for rejection and graft survival was superior compared with subjects from the other Swiss transplant centers (n = 513) or from Western Europe (n = 7024). To diminish the probability that superior results reflect patient selection rather than effects of DST, a 'matched-pair' analysis controlling for relevant factors of transplant outcome was performed. Again, this analysis indicated that recipients with DST had better outcome. Thus, our observation suggests that DST improve the outcome of living kidney transplants even when modern immunosuppressive drugs are prescribed.
Resumo:
BACKGROUND: Digital volume pulse (DVP), a noninvasive method for indirect assessment of arterial stiffness, was not tested previously in patients with end-stage renal disease (ESRD). Therefore, we compared the DVP-derived stiffness index (SI(DVP)) with aortic pulse wave velocity (PWV) determined by means of Doppler ultrasonography in 2 groups of patients with ESRD and analyzed the correlation between SI(DVP) and comorbidity. METHODS: Photoplethysmography was performed on the index finger of the dominant hand or the hand from the nonfistula arm in 49 renal transplant (TX) recipients and 48 hemodialysis (HD) patients. Pulse curves were analyzed with computer assistance. Comorbidity was assessed by using an established index. RESULTS: The intrasubject variability of SI(DVP) was 5.7%. SI(DVP) and aortic PWV values correlated significantly (r = 0.66; P = 0.001) in patients with ESRD. SI(DVP) could not be assessed reliably in 25% and 6% of HD patients and TX recipients, respectively. Multivariate regression analyses showed that SI(DVP) increased with age in both HD patients and TX recipients (r = 0.61; P < 0.001) and with systolic blood pressure (r = 0.53; P < 0.025), mean arterial pressure (r = 0.47; P < 0.05), and pulse pressure (r = 0.52; P = 0.02) in TX recipients. Severity of comorbid status was associated highly with individual residuals of age-adjusted SI(DVP) in HD patients and TX recipients (P < 0.001). CONCLUSION: DVP allows the measurement of arterial stiffness in most, but not all, patients with ESRD. SI(DVP) values correlate with comorbidity in HD patients and TX recipients.