909 resultados para intrauterine device
Resumo:
The fabrication and characterization of long-period gratings (LPGs) in fiber tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect, yielding a limiting index resolution of ±8.5 × 10-5 for solutions with an index in the range 1.330-1.335. © 2006 IEEE.
Resumo:
Healthcare providers are under ever increasing pressure to deliver more technologically advanced care without increasing costs. Innovation is essential (Darzi, 2008), and for this healthcare providers rely on innovation within commercial companies. SMEs have an important part to play in this sector (NHS Supply Chain Parliamentary Brief, 2013). Collaboration between SME suppliers and the NHS for innovation forms the focus of this paper. We examine the academic literature on interorganizational innovation including academic insights from the areas of forward commitment procurement (Environmental Innovation Advisory Group, 2003-2008), pre-commercial procurement (Bos & Corvers, 2007), innovation and SMEs. We then explore practice, first from a policy and business sector perspective. Second, we present evidence from fifteen cases of interorganizational innovation projects involving SMEs and UK healthcare providers. Our findings show much effort is being put into creating opportunities for more interorganizational innovation of medical devices. Working across organizational boundaries presents added complexity to the innovation environment and process, and the challenge of developing high-quality cross-boundary group interaction.
Resumo:
We present what is to our knowledge the first comprehensive investigation of the use of blazed fiber Bragg gratings (BFBGs) to interrogate wavelength division multiplexed (WDM) in-fiber optical sensor arrays. We show that the light outcoupled from the core of these BFBGs is radiated with sufficient optical power that it may be detected with a low-cost charge-coupled device (CCD) array. We present thorough system performance analysis that shows sufficient spectral-spatial resolution to decode sensors with a WDM separation of 75 ρm, signal-to-noise ratio greater than 45-dB bandwidth of 70 nm, and drift of only 0.1 ρm. We show the system to be polarization-state insensitive, making the BFBG-CCD spectral analysis technique a practical, extremely low-cost, alternative to traditional tunable filter approaches.
Resumo:
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals? difference frequency ~1 THz.(C) 2012 American Institute of Physics.
Resumo:
We demonstrate a bi-metal coating (platinum and gold or silver) localised surface plasmon resonance fibre device that produces an index spectral sensitivity of over 11,000 nm/RIU, yielding an index resolution of 5×10-6in the aqueous index regime, consisting of a structured multi-layered thin film on D-shaped fibre. © 2014 SPIE.
Resumo:
Microfabrication of photonic devices by means of femtosecond (fs) laser pulses is reviewed. Adaptive modeling of fs laser pulse propagation was performed for detailed study of different regimes. Submicron structures are demonstrated in both infrared and UV ranges. Applications to fibre based devices and prototype integrated planar devices are discussed. © 2007 Optical Society of America.
Resumo:
A 1.2X500μm slot was engraved across a fiber Bragg grating (FBG) using femtosecond laser patterning and chemical etching. liquid core FBGs were constructed and their sensitivity to refractive index of up to 10-6/pm was measured.
Resumo:
The fabrication and characterisation of Long Period Gratings in fibre tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect.
Resumo:
Background: A new commercially available device (IOLMaster, Zeiss Instruments) provides high resolution non-contact measurements of axial length (using partial coherent interferometry), anterior chamber depth, and corneal radius (using image analysis). The study evaluates the validity and repeatability of these measurements and compares the findings with those obtained from instrumentation currently used in clinical practice. Method: Measurements were taken on 52 subjects (104 eyes) aged 18-40 years with a range of mean spherical refractive error from +7.0 D to -9.50 D. IOLMaster measurements of anterior chamber depth and axial length were compared with A-scan applanation ultrasonography (Storz Omega) and those for corneal radius with a Javal-Schiötz keratometer (Topcon) and an EyeSys corneal videokeratoscope. Results: Axial length: the difference between IOLMaster and ultrasound measures was insignificant (0.02 (SD 0.32) mm, p = 0.47) with no bias across the range sampled (22.40-27.99 mm). Anterior chamber depth: significantly shorter depths than ultrasound were found with the IOLMaster (-0.06 (0.25) mm, p <0.02) with no bias across the range sampled (2.85-4.40 mm). Corneal radius: IOLMaster measurements matched more closely those of the keratometer than those of the videokeratoscope (mean difference -0.03 v -0.06 mm respectively), but were more variable (95% confidence 0.13 v 0.07 mm). The repeatability of all the above IOLMaster biometric measures was found to be of a high order with no significant bias across the measurement ranges sampled. Conclusions: The validity and repeatability of measurements provided by the IOLMaster will augment future studies in ocular biometry.
Resumo:
Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.
Resumo:
We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.
Resumo:
In the present paper the results from designing of device, which is a part of the automated information system for counting, reporting and documenting the quantity of produced bottles in a factory for glass processing are presented. The block diagram of the device is given. The introduced system can be applied in other discrete productions for counting of the quantity of bottled production.
Resumo:
The problems of the cognitive development of subject “perception” are discussed in the thesis: from the object being studied and means of action till the single system “subject – modus operandi of subject – object”. Problems of increasing adequacy of models of “live” nature are analyzed. The concept of developing decisionmaking support systems as expert systems to decision-making support systems as personal device of a decisionmaker is discussed. The experience of the development of qualitative prediction on the basis of polyvalent dependences, represented by a decision tree, which realizes the concept of “plural subjective determinism”, is analyzed. The examples of applied systems prediction of ecological-economic and social processes are given. The ways of their development are discussed.
Resumo:
We introduce a robot-safety device system attended by two different repairmen. The twin system is characterized by the natural feature of cold standby and by an admissible “risky” state. In order to analyse the random behaviour of the entire system (robot, safety device, repair facility) we employ a stochastic process endowed with probability measures satisfying general Hokstad-type differential equations. The solution procedure is based on the theory of sectionally holomorphic functions, characterized by a Cauchy-type integral defined as a Cauchy principal value in double sense. An application of the Sokhotski-Plemelj formulae determines the long-run availability of the robot-safety device. Finally, we consider the particular but important case of deterministic repair.
Resumo:
We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.