985 resultados para intestinal morphology
Resumo:
Complex cell signal transduction mechanisms regulate intestinal epithelial shape, polarity, motility, organelles, cell membrane components as well as physical and mechanical properties to influence alimentary digestion, absorption, secretion, detoxification and fluid balance. Interactions between the epithelial cells and adjacent mesenchyme are central to intestinal homeostasis although the key regulatory molecules of specific differentiation steps remain unclear. Isolation and primary culture of heterotypic murine intestinal cells provides a model system for elucidation of essential molecular cross-talk between epithelium and mesenchyme that may provide several biological and practical advantages over transformed cell lines. An in vitro primary culture system for neonatal rat or mouse intestinal cells has been established that forms monolayers, expresses intestine-specific epithelial features including intestinal brush borders and appropriate hydrolase enzymes. Our studies confirm the promise of this method which may advance our understanding of heterotypic cellular interactions implicated in intestinal function and may provide important insights into the pathobiology of disease.
Resumo:
This study investigated the taxonomy and distribution of the deep-sea polyplacophoran mollusc Nierstraszella Sirenko, 1992 in the Indo-West Pacific, based on a collection of 516 specimens collected in the Philippines and Solomon Islands. Although seven species names have historically been proposed in this group of chitons, all have been considered as synonyms of the monotypic N. lineata (Nierstrasz, 1905). Morphological examination of this new material reveals the presence of two species. N. lineata is distinct from N. andamanica (Smith, 1906), based on morphological characters given in the original species description and very distinctly different morphology of aesthete pores in the shell surface. Furthermore, populations of N. andamanica in the Philippines and Solomon Islands are locally colonized with the epibiotic (ectoparasitic) bryozoan Pseudobathyalozoon profundum d'Hondt, 2006. These bryozoans attach ventrally to the girdle of the host chiton and the erect zooids feed within the pallial cavity, among the chiton's gills.
Resumo:
Glucagon-like peptide-1(7-36)amide (tGLP-1) is an important insulin-releasing hormone of the enteroinsular axis which is secreted by endocrine L-cells of the small intestine following nutrient ingestion. The present study has evaluated tGLP-1 in the intestines of normal and diabetic animal models and estimated the proportion present in glycated form. Total immunoreactive tGLP-1 levels in the intestines of hyperglycaemic hydrocortisone-treated rats, streptozotocin-treated mice and ob/ob mice were similar to age-matched controls. Affinity chromatographic separation of glycated and non-glycated proteins in intestinal extracts followed by radioimmunoassay using a fully crossreacting anti-serum demonstrated the presence of glycated tGLP-1 within the intestinal extracts of all control animals (approximately 19%., of total tGLP-1 content). Chemically induced and spontaneous animal models of diabetes were found to possess significantly greater levels of glycated tGLP-1 than controls, corresponding to between 24-71% of the total content. These observations suggest that glycated tGLP-1 may be of physiological significance given that such N-terminal modification confers resistance to DPP IV inactivation and degradation, extending the very short half-life (