874 resultados para intelligent tutoring system


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verication: Application task of EVALITA 2009. This submission consisted of a score-level fusion of three component systems, a joint-factor GMM system and two SVM systems using GLDS and GMM supervector kernels. Development and evaluation results are presented, demonstrating the effectiveness of this fused system approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the relationship between the arts and national innovation policy in Australia, pivoting around the Venturous Australia report released in September 2008 as part of the Review of the National Innovation System (RNIS). This came at a time of optimism that the arts sector would be included in Australia’s federal innovation policy. However, despite the report’s broad vision for innovation and specific commentary on the arts, the more ambitious hopes of arts sector advocates remained unfulfilled. This article examines the entwining discourses of creativity and innovation which emerged globally and in Australia prior to the RNIS, before analysing Venturous Australia in terms of the arts and the ongoing science-and-technology bias to innovation policy. It ends by considering why sector-led policy research and lobbying has to date proved unsuccessful and then suggests what public policy development is now needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe the recent development of a low-bandwidth wireless camera sensor network. We propose a simple, yet effective, network architecture which allows multiple cameras to be connected to the network and synchronize their communication schedules. Image compression of greater than 90% is performed at each node running on a local DSP coprocessor, resulting in nodes using 1/8th the energy compared to streaming uncompressed images. We briefly introduce the Fleck wireless node and the DSP/camera sensor, and then outline the network architecture and compression algorithm. The system is able to stream color QVGA images over the network to a base station at up to 2 frames per second. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RatSLAM is a biologically-inspired visual SLAM and navigation system that has been shown to be effective indoors and outdoors on real robots. The spatial representation at the core of RatSLAM, the experience map, forms in a distributed fashion as the robot learns the environment. The activity in RatSLAM’s experience map possesses some geometric properties, but still does not represent the world in a human readable form. A new system, dubbed RatChat, has been introduced to enable meaningful communication with the robot. The intention is to use the “language games” paradigm to build spatial concepts that can be used as the basis for communication. This paper describes the first step in the language game experiments, showing the potential for meaningful categorization of the spatial representations in RatSLAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS (Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows initial results in deploying the biologically inspired Simultaneous Localisation and Mapping system, RatSLAM, in an outdoor environment. RatSLAM has been widely tested in indoor environments on the task of producing topologically coherent maps based on a fusion of odometric and visual information. This paper details the changes required to deploy RatSLAM on a small tractor equipped with odometry and an omnidirectional camera. The principal changes relate to the vision system, with others required for RatSLAM to use omnidirectional visual data. The initial results from mapping around a 500 m loop are promising, with many improvements still to be made.