979 resultados para instantaneous frequency estimation
Resumo:
This paper demonstrates that, unlike what the conventional wisdom says, measurement error biases in panel data estimation of convergence using OLS with fixed effects are huge, not trivial. It does so by way of the "skipping estimation"': taking data from every m years of the sample (where m is an integer greater than or equal to 2), as opposed to every single year. It is shown that the estimated speed of convergence from the OLS with fixed effects is biased upwards by as much as 7 to 15%.
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
Measurement of total energy expenditure may be crucial to an understanding of the relation between physical activity and disease and in order to frame public health intervention. To devise a self-administered physical activity frequency questionnaire (PAFQ), the following data-based approach was used. A 24-hour recall was administered to a random sample of 919 adult residents of Geneva, Switzerland. The data obtained were used to establish the list of activities (and their median duration) that contributed to 95% of the energy expended, separately for men and women. Activities that were trivial for the whole sample but that contributed to > or = 10% of an individual's energy expenditure were also selected. The final PAFQ lists 70 activities or group of activities with their typical duration. About 20 minutes are required for respondents to indicate the number of days and the number of hours per day that they performed each activity. The PAFQ method was validated against a heart rate monitor, a more objective method. The total energy estimated by the PAFQ in 41 volunteers correlated well (r = 0.76) with estimates using a heart rate monitor. The authors conclude that the design of their self-administered physical activity frequency questionnaire based on data from 24-hour recall appeared to accurately estimate energy expenditure.
Resumo:
Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.
Resumo:
This paper considers a job search model where the environment is notstationary along the unemployment spell and where jobs do not lastforever. Under this circumstance, reservation wages can be lower thanwithout separations, as in a stationary environment, but they can alsobe initially higher because of the non-stationarity of the model. Moreover,the time-dependence of reservation wages is stronger than with noseparations. The model is estimated structurally using Spanish data forthe period 1985-1996. The main finding is that, although the decrease inreservation wages is the main determinant of the change in the exit ratefrom unemployment for the first four months, later on the only effect comesfrom the job offer arrival rate, given that acceptance probabilities areroughly equal to one.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.
Resumo:
ABSTRACT Biomass is a fundamental measure for understanding the structure and functioning (e.g. fluxes of energy and nutrients in the food chain) of aquatic ecosystems. We aim to provide predictive models to estimate the biomass of Triplectides egleri Sattler, 1963, in a stream in Central Amazonia, based on body and case dimensions. We used body length, head-capsule width, interocular distance and case length and width to derive biomass estimations. Linear, exponential and power regression models were used to assess the relationship between biomass and body or case dimensions. All regression models used in the biomass estimation of T. egleri were significant. The best fit between biomass and body or case dimensions was obtained using the power model, followed by the exponential and linear models. Body length provided the best estimate of biomass. However, the dimensions of sclerotized structures (interocular distance and head-capsule width) also provided good biomass predictions, and may be useful in estimating biomass of preserved and/or damaged material. Case width was the dimension of the case that provided the best estimate of biomass. Despite the low relation, case width may be useful in studies that require low stress on individuals.
Resumo:
Two methods were evaluated for scaling a set of semivariograms into a unified function for kriging estimation of field-measured properties. Scaling is performed using sample variances and sills of individual semivariograms as scale factors. Theoretical developments show that kriging weights are independent of the scaling factor which appears simply as a constant multiplying both sides of the kriging equations. The scaling techniques were applied to four sets of semivariograms representing spatial scales of 30 x 30 m to 600 x 900 km. Experimental semivariograms in each set successfully coalesced into a single curve by variances and sills of individual semivariograms. To evaluate the scaling techniques, kriged estimates derived from scaled semivariogram models were compared with those derived from unscaled models. Differences in kriged estimates of the order of 5% were found for the cases in which the scaling technique was not successful in coalescing the individual semivariograms, which also means that the spatial variability of these properties is different. The proposed scaling techniques enhance interpretation of semivariograms when a variety of measurements are made at the same location. They also reduce computational times for kriging estimations because kriging weights only need to be calculated for one variable. Weights remain unchanged for all other variables in the data set whose semivariograms are scaled.
Resumo:
Tumor-reactive T cells play an important role in cancer immunosurveillance. Applying the multimer technology, we report here an unexpected high frequency of Melan-A-specific CTLs in a melanoma patient with progressive lymph node metastases, consisting of 18 and 12.8% of total peripheral blood and tumor-infiltrating CD8+ T cells, respectively. Melan-A-specific CTLs revealed a high cytolytic activity against allogeneic Melan-A-expressing target cells but failed to kill the autologous tumor cells. Loading of the tumor cells with Melan-A peptide reversed the resistance to killing, suggesting impaired function of the MHC class I antigen processing and presentation pathway. Mutations of the coding region of the HLA-A2 binding Melan-A26-35 peptide or down-regulation of the MHC class I heavy chain, the antigenic peptide TAP, and tapasin could be excluded. However, PCR and immunohistochemical analysis revealed a deficiency of the immunoproteasomes low molecular weight protein 2 and low molecular weight protein 7 in the primary tumor cells, which affects the quantity and quality of generated T-cell epitopes and might explain the resistance to killing. This is supported by our data, demonstrating that the resistance to killing can be partially reversed by pre-exposure of the tumor cells to IFN-gamma, which is known to induce the immunoproteasomes. Overall, this is the first report of an extremely high frequency of tumor-specific CTLs that exhibit competent T-cell-effector functions but fail to lyse the autologous tumor cells. Immunotherapeutic approaches should not only focus on the induction of a robust antitumor immune response, but should also have to target tumor immune escape mechanisms.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
Precise estimation of propagation parameters inprecipitation media is of interest to improve the performanceof communications systems and in remote sensing applications.In this paper, we present maximum-likelihood estimators ofspecific attenuation and specific differential phase in rain. Themodel used for obtaining the cited estimators assumes coherentpropagation, reflection symmetry of the medium, and Gaussianstatistics of the scattering matrix measurements. No assumptionsabout the microphysical properties of the medium are needed.The performance of the estimators is evaluated through simulateddata. Results show negligible estimators bias and variances closeto Cramer–Rao bounds.
Resumo:
We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.