995 resultados para insertion electrochemical
Resumo:
The performance of the register insertion protocol for mixed voice-data traffic is investigated by simulation. The simulation model incorporates a common insertion buffer for station and ring packets. Bandwidth allocation is achieved by imposing a queue limit at each node. A simple priority scheme is introduced by allowing the queue limit to vary from node to node. This enables voice traffic to be given priority over data. The effect on performance of various operational and design parameters such as ratio of voice to data traffic, queue limit and voice packet size is investigated. Comparisons are made where possible with related work on other protocols proposed for voice-data integration. The main conclusions are: (a) there is a general degradation of performance as the ratio of voice traffic to data traffic increases, (b) substantial improvement in performance can be achieved by restricting the queue length at data nodes and (c) for a given ring utilisation, smaller voice packets result in lower delays for both voice and data traffic.
Resumo:
Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae.
Resumo:
In the present work we consider two aspects of the deposition of metal clusters on an electrode surface. The formation of such clusters with the tip of a scanning tunneling microscope is simulated by atom dynamics. Subsequently the stability of these clusters is investigated by Monte Carlo simulations in a grand-canonical ensemble. In particular, the following systems were considered explicitly: Pd clusters on Au(111), Cu on Au(111), Ag on Au(111), Pb on Au(111) and Cu on Ag(111). The analysis of the results obtained for the different systems leads to the conclusion that optimal systems for nanostructuring are those where the metals participating have similar cohesive energies and negative heats of alloy formation. In this respect, the system Cu-Pd(111) is predicted as a good candidate for the formation of stable clusters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Structural and kinetic aspects of 2-D irreversible metal deposition under potentiostatic conditions are analyzed by means of dynamic Monte Carlo simulations employing embedded atom potentials for a model system. Three limiting models, all considering adatom diffusion, were employed to describe adatom deposition. The first model (A) considers adatom deposition on any free substrate site on the surface at the same rate. The second model (B) considers adatom deposition only on substrate sites which exhibit no neighboring sites occupied by adatoms. The third model (C) allows deposition at higher rates on sites presenting neighboring sites occupied by adatoms. Under the proper conditions, the coverage (theta) versus time (t) relationship for the three cases can be heuristically fitted to the functional form theta = 1 - exp(-betat(alpha)), where alpha and beta are parameters. We suggest that the value of the parameter alpha can be employed to distinguish experimentally between the three cases. While model A trivially delivers a = 1, models B and C are characterized by alpha 1, respectively.
Resumo:
: Static calculation and preliminary kinetic Monte Carlo simulation studies are undertaken for the nucleation and growth on a model system which follows a Frank-van der Merwe mechanism. In the present case, we consider the deposition of Ag on Au(100) and Au(111) surfaces. The interactions were calculated using the embedded atom model. The kinetics of formation and growth of 2D Ag structures on Au(100) and Au(111) is investigated and the influence of surface steps on this phenomenon is studied. Very different time scales are predicted for Ag diffusion on Au(100) and Au(111), thus rendering very different regimes for the nucleation and growth of the related 2D phases. These observations are drawn from the application of a model free of any adjustable parameter.
Resumo:
Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.
Resumo:
Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.