998 resultados para insect-plant interation
Resumo:
ABSTRACT: INTRODUCTION: Primitively eusocial halictid bees are excellent systems to study the origin of eusociality, because all individuals have retained the ancestral ability to breed independently. In the sweat bee Halictus scabiosae, foundresses overwinter, establish nests and rear a first brood by mass-provisioning each offspring with pollen and nectar. The mothers may thus manipulate the phenotype of their offspring by restricting their food provisions. The first brood females generally help their mother to rear a second brood of males and gynes that become foundresses. However, the first brood females may also reproduce in their maternal or in other nests, or possibly enter early diapause. Here, we examined if the behavioural specialization of the first and second brood females was associated with between-brood differences in body size, energetic reserves and pollen provisions. RESULTS: The patterns of variation in adult body size, weight, fat content and food provisioned to the first and second brood indicate that H. scabiosae has dimorphic females. The first-brood females were significantly smaller, lighter and had lower fat reserves than the second-brood females and foundresses. The first-brood females were also less variable in size and fat content, and developed on homogeneously smaller pollen provisions. Foundresses were larger than gynes of the previous year, suggesting that small females were less likely to survive the winter. CONCLUSIONS: The marked size dimorphism between females produced in the first and second brood and the consistently smaller pollen provisions provided to the first brood suggest that the first brood females are channelled into a helper role during their pre-imaginal development. As a large body size is needed for successful hibernation, the mother may promote helping in her first brood offspring by restricting their food provisions. This pattern supports the hypothesis that parental manipulation may contribute to promote worker behaviour in primitively eusocial halictids.
Resumo:
The manipulation of DNA is routine practice in botanical research and has made a huge impact on plant breeding, biotechnology and biodiversity evaluation. DNA is easy to extract from most plant tissues and can be stored for long periods in DNA banks. Curation methods are well developed for other botanical resources such as herbaria, seed banks and botanic gardens, but procedures for the establishment and maintenance of DNA banks have not been well documented. This paper reviews the curation of DNA banks for the characterisation and utilisation of biodiversity and provides guidelines for DNA bank management. It surveys existing DNA banks and outlines their operation. It includes a review of plant DNA collection, preservation, isolation, storage, database management and exchange procedures. We stress that DNA banks require full integration with existing collections such as botanic gardens, herbaria and seed banks, and information retrieval systems that link such facilities, bioinformatic resources and other DNA banks. They also require efficient and well-regulated sample exchange procedures. Only with appropriate curation will maximum utilisation of DNA collections be achieved.
Resumo:
Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.
Resumo:
Caste differentiation and division of labor are the hallmarks of social insect colonies [1, 2]. The current dogma for female caste differentiation is that female eggs are totipotent, with morphological and physiological differences between queens and workers stemming from a developmental switch during the larval stage controlled by nutritional and other environmental factors (e.g., [3-8]). In this study, we tested whether maternal effects influence caste differentiation in Pogonomyrmex harvester ants. By conducting crossfostering experiments we identified two key factors in the process of caste determination. New queens were produced only from eggs laid by queens exposed to cold. Moreover, there was a strong age effect, with development into queens occurring only in eggs laid by queens that were at least two years old. Biochemical analyses further revealed that the level of ecdysteroids was significantly lower in eggs developing into queens than workers. By contrast, we found no significant effect of colony size or worker exposure to cold, suggesting that the trigger for caste differentiation may be independent of the quantity and quality of resources provided to larvae. Altogether these data demonstrate that the developmental fate of female brood is strongly influenced by maternal effects in ants of the genus Pogonomyrmex.
Resumo:
Evaluation of insect-pest infestation associated to potato (Solanum tuberosum L.) under effect of nitrogen and potassium fertilizers and the accumulated amount of free aminoacids in Achat and Monalisa cultivars. The objective of this work was to evaluate the occurence of insect-pests on potato plants influenced by dosages of nitrogen and potassium accumulated in plant organs. A total of 169 plants of the Achat and Monalisa cultivars were evaluated to determine the presence-absence of Diabrotica speciosa Germar, 1824 and Agrotis ipsilon Hüfnagel, 1767. The experiment was carried out and executed at the Universidade Federal Fluminense, and the delineation was complete randomized block design, with four replication and nine treatments, using three fertilization level (0; 75 and 150 Kg/ha) with N-urea + KCl. The aminoacid levels were adjusted by the Leucine standard-curve (µg/l), using the Ninhydrin method, at 570 nm. The results showed that the tubercles of Monalisa accumulated high free aminoacid levels with 7,95% in the treatment N1K2 and 7,75% in the N2K1.These treatments, induced the infestation by D. speciosa larvae in 27,03%, when the aminoacid level was 2,01 ± 0,58% (X ± EP), with probability of 0,0196
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
Pollination syndromes involve convergent evolution towards phenotypes composed of specific scents, colours or floral morphologies that attract or restrict pollinator access to reward. How these traits might influence the distributions of plant species in interaction with pollinators has rarely been investigated. We sampled 870 vegetation plots in the western Swiss Alps and classified the plant species into seven blossom types according to their floral morphology (wind, disk, funnel, tube, bilabiate, head or brush). We investigated the environmental features of plots with functional diversity (FD) lower than expected by chance alone to detect potential pollination filtering and related the proportions of the seven blossom types to a combination of environmental descriptors. From these results, we inferred the potential effect of the pollinator on the spatial distribution of plant species. The vegetation plots with significantly lower FD of blossom types than expected by chance were found at higher altitudes, and the proportions of blossom types were strongly patterned along the same gradient. These results support a biotic filtering effect on plant species assemblages through pollination: disk blossoms became dominant at higher altitudes, resulting in a lower FD. In harsh conditions at high altitudes, pollinators usually decrease in activity, and the openness of the disk blossom grants access to any available pollinator. Inversely, bilabiate blossoms, which are mostly pollinated by bees, were more abundant at lower elevations, which are characterised by greater abundance and diversity of bees. Generalisation through openness of the blossom could be advantageous at high elevations, while specialisation could be a successful alternative strategy at lower elevations. The approach used in this study is purely correlative, and further investigations should be conducted to infer the nature of the causal relationship between plant and pollinator distributions.
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
Several hypotheses have been proposed to explain the patterns of host plant utilization by herbivorous insects in natural communities. We tested four hypotheses aiming to understand the pattern of attack by gall-inducing insects on the dioecious shrub, Baccharis pseudomyriocephala (Asteraceae). The shrub occurs in the Parque Estadual do Itacolomi, Southeastern Brazil, and supports ten species of galling insects. The following hypotheses were tested: i) male plants are more attacked by galling insects than female plants; ii) larger plant modules are preferentially attacked by galling insects; iii) galling insects perform better on larger modules than on smaller modules; iv) galling insects increase in abundance with meristematic availability. To address these questions, 240 plants (120 of each sex) were sampled in both reproductive and vegetative periods. We recorded the growth rate (4 cm), inflorescence and fruit production, attack rates of the galling insects, and their survivorship and mortality per shoot (module). Modules were separated into size classes (cm) and analyzed by regressions and ANCOVAs. Module size and reproductive effort were positively correlated with host plant size. We did not observe any effect of host plant gender on either variables. In the same way, host plant sex did not show any influence on the abundance and richness of galling insects. Although the abundance of galling insects showed a positive correlation with shoot size, the trend disappeared when the analyses were performed taking into consideration the number of galls per unit of growth (number of galls/cm of shoot) or biomass (number of galls/dry weight). Larval survivorship was not influenced by shoot size. Also, we observed that the abundance of one species of hemipteran galling insect showed a positive relation with leaf biomass. Therefore, we conclude that gender and vigor of this plant species do not influence the community structure of its galling herbivores.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Epidemiological studies in urban areas have linked increasing respiratory and cardiovascular pathologies with atmospheric particulate matter (PM) from anthropic activities. However, the biological fate of metal-rich PM industrial emissions in urban areas of developed countries remains understudied. Lead toxicity and bioaccessibility assessments were therefore performed on emissions from a lead recycling plant, using complementary chemical acellular tests and toxicological assays, as a function of PM size (PM(10-2.5), PM(2.5-1) and PM(1)) and origin (furnace, refining and channeled emissions). Process PM displayed differences in metal content, granulometry, and percentage of inhalable fraction as a function of their origin. Lead gastric bioaccessibility was relatively low (maximum 25%) versus previous studies; although, because of high total lead concentrations, significant metal quantities were solubilized in simulated gastrointestinal fluids. Regardless of origin, the finest PM(1) particles induced the most significant pro-inflammatory response in human bronchial epithelial cells. Moreover, this biological response correlated with pro-oxidant potential assay results, suggesting some biological predictive value for acellular tests. Pulmonary effects from lead-rich PM could be driven by thiol complexation with either lead ions or directly on the particulate surface. Finally, health concern of PM was discussed on the basis of pro-inflammatory effects, accellular test results, and PM size distribution.
Resumo:
Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.
Resumo:
The effects of ants on the insect community on inflorescences of Byrsonima crassifolia (Malpighiaceae) were tested in an ant exclusion experiment in a cerrado vegetation in southeastern Brazil. Forty-four species of insects (23 families) and nine species of ants (6 genera and 3 subfamilies) were found on the inflorescences of B. crassifolia. The exclusion of ants, primarily Camponotus sericeiventris and Camponotus spp., reduced the treehopper population to 20% of the original abundance. Ant exclusion and time influenced the abundance of chewing (Exclusion, P<0.001; Time, P<0.002), and sucking insects (Exclusion, P<0.02; Time, P<0.01). Twice as many chewing and sucking insects were found on ant-excluded inflorescences as compared to control inflorescences (P<0.001). One and half more sucking insects were found on ant-excluded than on control inflorescences. Only time significantly influenced the richness of chewing and sucking insects associated with B. crassifolia inflorescences. Inflorescences on control branches were significantly less attacked by herbivores than inflorescences on ant-excluded branches (P<0.001). Therefore, these results suggest that the presence of ants alters the structure of insect herbivore community associated with B. crassifolia.
Resumo:
The use of diatomaceous earth (DE) is a very efficient insect control measure in stored grain IPM due to its low cost, easy application, reduction of active ingredient residues, lower environmental contamination and operator safety. The objective of this research was to evaluate the efficacy of different dosages of DE mixed with powder deltamethrin for controlling Sitophilus zeamais in stored corn. Samples of 100 g of clean and dry corn, in three replicates, were submitted to the following treatments: DE (Keepdry®), at the dosages of 500, 750 and 1000 g/t; powder deltamethrin (K-Obiol®) at 0,5 g a.i. /t and 1,0 g a.i. /t; and combinations of the lowest and highest DE dosages with the two dosages of deltamethrin. Thirty adults of S. zeamais were placed in each vial with the treated grains and kept in environment chambers at 25ºC. Mortality was evaluated from the 1st to the 28th day. In the treatments mixing DE with deltamethrin or deltamethrin alone, the mortalyti was registered since the first day. In the treatments using only DE, the first dead insects were recorded after the 3rd day, especially in the highest dosages. After the 7th day, however, there was no statistical difference among all treatments, except for the lowest dosage of DE which reached a satisfactory control level only by the 14th day. It was concluded that treatments using DE combined with low dosages of powder deltamethrin represent an efficient control measure against S. zeamais in stored corn because insect mortality is faster than in treatments using DE alone and residues of active ingredients are much lower than using the insecticide in high dosages.