957 resultados para information logistics integration
Resumo:
Within the information systems field, the task of conceptual modeling involves building a representation of selected phenomena in some domain. High-quality conceptual-modeling work is important because it facilitates early detection and correction of system development errors. It also plays an increasingly important role in activities like business process reengineering and documentation of best-practice data and process models in enterprise resource planning systems. Yet little research has been undertaken on many aspects of conceptual modeling. In this paper, we propose a framework to motivate research that addresses the following fundamental question: How can we model the world to better facilitate our developing, implementing, using, and maintaining more valuable information systems? The framework comprises four elements: conceptual-modeling grammars, conceptual-modeling methods, conceptual-modeling scripts, and conceptual-modeling contexts. We provide examples of the types of research that have already been undertaken on each element and illustrate research opportunities that exist.
Resumo:
The efficacy of psychological treatments emphasising a self-management approach to chronic pain has been demonstrated by substantial empirical research. Nevertheless, high drop-out and relapse rates and low or unsuccessful engagement in self-management pain rehabilitation programs have prompted the suggestion that people vary in their readiness to adopt a self-management approach to their pain. The Pain Stages of Change Questionnaire (PSOCQ) was developed to assess a patient's readiness to adopt a self-management approach to their chronic pain. Preliminary evidence has supported the PSOCQ's psychometric properties. The current study was designed to further examine the psychometric properties of the PSOCQ, including its reliability, factorial structure and predictive validity. A total of 107 patients with an average age of 36.2 years (SD = 10.63) attending a multi-disciplinary pain management program completed the PSOCQ, the Pain Self-Efficacy Questionnaire (PSEQ) and the West Haven-Yale Multidimensional Pain Inventory (WHYMPI) pre-admission and at discharge from the program. Initial data analysis found inadequate internal consistencies of the precontemplation and action scales of the PSOCQ and a high correlation (r = 0.66, P < 0.01) between the action and maintenance scales. Principal component analysis supported a two-factor structure: 'Contemplation' and 'Engagement'. Subsequent analyses revealed that the PSEQ was a better predictor of treatment outcome than the PSOCQ scales. Discussion centres upon the utility of the PSOCQ in a clinical pain setting in light of the above findings, and a need for further research. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The three-dimensional structures of leucine-rich repeat (LRR) -containing proteins from five different families were previously predicted based on the crystal structure of the ribonuclease inhibitor. using an approach that combined homology-based modeling, structure-based sequence alignment of LRRs, and several rational assumptions. The structural models have been produced based on very limited sequence similarity, which, in general. cannot yield trustworthy predictions. Recently, the protein structures from three of these five families have been determined. In this report we estimate the quality of the modeling approach by comparing the models with the experimentally determined structures. The comparison suggests that the general architecture, curvature, interior/exterior orientations of side chains. and backbone conformation of the LRR structures can be predicted correctly. On the other hand. the analysis revealed that, in some cases. it is difficult to predict correctly the twist of the overall super-helical structure. Taking into consideration the conclusions from these comparisons, we identified a new family of bacterial LRR proteins and present its structural model. The reliability of the LRR protein modeling suggests that it would be informative to apply similar modeling approaches to other classes of solenoid proteins.
Resumo:
We examine the potential impact of interconnectivity of value chain partnerships through electronic means (e-business practices) on the management of Public Sector Agriculture R&D in Australia. We review the changing forms of managing research and development, the forces driving these changes, and R&D processes that are theoretically consistent with the move towards value chain involvement and the increase in active constituents in Public Sector Agriculture R&D. We then explore the potential of emerging e-business models to change the patterns of inter-connectivity, speed and omnipresence of partners in the value chain. Three e-business R&D management practices are identified that provide the prerequisite flexibility necessary to take advantage of opportunistic markets. These R&D business practices are: compressing R&D to reduce time to market, fostering co-development to enter a market at the last moment and building flexible products that allow adjustment at the last possible moment. Some fundamental reallocation of existing resources will be required to meet these markets. Implications of these e-business practices for R&D management are discussed.
An electronic lifeline: Information and communication technologies in a teacher education internship
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Members of the community contribute to survival from out-of-hospital cardiac arrest by contacting emergency medical services and performing cardiopulmonary resuscitation (CPR) prior to the arrival of an ambulance. In Australia there is a paucity of information of the extent that community members know the emergency telephone number and are trained in CPR. A survey of Queensland adults (n = 4490) was conducted to ascertain current knowledge and training levels and to target CPR training. Although most respondents (88.3%) could state the Australian emergency telephone number correctly, significant age differences were apparent (P < 0.001). One in five respondents aged 60 years and older could not state the emergency number correctly. While just over half the respondents (53.9%) had completed some form of CPR training, only 12.1% had recent training. Older people were more likely to have never had CPR training than young adults. Additional demographic and socio-economic differences were found between those never trained in CPR and those who were. The results emphasise the need to increase CPR training in those aged 40 and over, particularly females, and to increase the awareness of the emergency telephone number amongst older people. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.