902 resultados para indoor surveillance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose the adoption of a statistical framework used in the evaluation of forensic evidence as a tool for evaluating and presenting circumstantial "evidence" of a disease outbreak from syndromic surveillance. The basic idea is to exploit the predicted distributions of reported cases to calculate the ratio of the likelihood of observing n cases given an ongoing outbreak over the likelihood of observing n cases given no outbreak. The likelihood ratio defines the Value of Evidence (V). Using Bayes' rule, the prior odds for an ongoing outbreak are multiplied by V to obtain the posterior odds. This approach was applied to time series on the number of horses showing clinical respiratory symptoms or neurological symptoms. The separation between prior beliefs about the probability of an outbreak and the strength of evidence from syndromic surveillance offers a transparent reasoning process suitable for supporting decision makers. The value of evidence can be translated into a verbal statement, as often done in forensics or used for the production of risk maps. Furthermore, a Bayesian approach offers seamless integration of data from syndromic surveillance with results from predictive modeling and with information from other sources such as disease introduction risk assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We evaluated Swiss slaughterhouse data for integration in a national syndromic surveillance system for the early detection of emerging diseases in production animals. We analysed meat inspection data for cattle, pigs and small ruminants slaughtered between 2007 and 2012 (including emergency slaughters of sick/injured animals); investigating patterns in the number of animals slaughtered and condemned; the reasons invoked for whole carcass condemnations; reporting biases and regional effects. RESULTS: Whole carcass condemnation rates were fairly uniform (1-2‰) over time and between the different types of production animals. Condemnation rates were much higher and less uniform following emergency slaughters. The number of condemnations peaked in December for both cattle and pigs, a time when individuals of lower quality are sent to slaughter when hay and food are limited and when certain diseases are more prevalent. Each type of production animal was associated with a different profile of condemnation reasons. The most commonly reported one was "severe lesions" for cattle, "abscesses" for pigs and "pronounced weight loss" for small ruminants. These reasons could constitute valuable syndromic indicators as they are unspecific clinical manifestations of a large range of animal diseases (as well as potential indicators of animal welfare). Differences were detected in the rate of carcass condemnation between cantons and between large and small slaughterhouses. A large percentage (>60% for all three animal categories) of slaughterhouses operating never reported a condemnation between 2007 and 2012, a potential indicator of widespread non-reporting bias in our database. CONCLUSIONS: The current system offers simultaneous coverage of cattle, pigs and small ruminants for the whole of Switzerland; and traceability of each condemnation to its farm of origin. The number of condemnations was significantly linked to the number of slaughters, meaning that the former should be always be offset by the later in analyses. Because this denominator is only communicated at the end of the month, condemnations may currently only be monitored on a monthly basis. Coupled with the lack of timeliness (30-60 days delay between condemnation and notification), this limits the use of the data for early-detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Estimates of the size of the undiagnosed HIV-infected population are important to understand the HIV epidemic and to plan interventions, including "test-and-treat" strategies. METHODS We developed a multi-state back-calculation model to estimate HIV incidence, time between infection and diagnosis, and the undiagnosed population by CD4 count strata, using surveillance data on new HIV and AIDS diagnoses. The HIV incidence curve was modelled using cubic splines. The model was tested on simulated data and applied to surveillance data on men who have sex with men in The Netherlands. RESULTS The number of HIV infections could be estimated accurately using simulated data, with most values within the 95% confidence intervals of model predictions. When applying the model to Dutch surveillance data, 15,400 (95% confidence interval [CI] = 15,000, 16,000) men who have sex with men were estimated to have been infected between 1980 and 2011. HIV incidence showed a bimodal distribution, with peaks around 1985 and 2005 and a decline in recent years. Mean time to diagnosis was 6.1 (95% CI = 5.8, 6.4) years between 1984 and 1995 and decreased to 2.6 (2.3, 3.0) years in 2011. By the end of 2011, 11,500 (11,000, 12,000) men who have sex with men in The Netherlands were estimated to be living with HIV, of whom 1,750 (1,450, 2,200) were still undiagnosed. Of the undiagnosed men who have sex with men, 29% (22, 37) were infected for less than 1 year, and 16% (13, 20) for more than 5 years. CONCLUSIONS This multi-state back-calculation model will be useful to estimate HIV incidence, time to diagnosis, and the undiagnosed HIV epidemic based on routine surveillance data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many location-based services target users in indoor environments. Similar to the case of dense urban areas where many obstacles exist, indoor localization techniques suffer from outlying measurements caused by severe multipath propaga??tion and non-line-of-sight (NLOS) reception. Obstructions in the signal path caused by static or mobile objects downgrade localization accuracy. We use robust multipath mitigation techniques to detect and filter out outlying measurements in indoor environments. We validate our approach using a power-based lo??calization system with GSM. We conducted experiments without any prior knowledge of the tracked device's radio settings or the indoor radio environment. We obtained localization errors in the range of 3m even if the sensors had NLOS links to the target device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Swiss pig population enjoys a favourable health situation. To further promote this, the Pig Health Service (PHS) conducts a surveillance program in affiliated herds: closed multiplier herds with the highest PHS-health and hygiene status have to be free from swine dysentery and progressive atrophic rhinitis and are clinically examined four times a year, including laboratory testing. Besides, four batches of pigs per year are fattened together with pigs from other herds and checked for typical symptoms (monitored fattening groups (MF)). While costly and laborious, little was known about the effectiveness of the surveillance to detect an infection in a herd. Therefore, the sensitivity of the surveillance for progressive atrophic rhinitis and swine dysentery at herd level was assessed using scenario tree modelling, a method well established at national level. Furthermore, its costs and the time until an infection would be detected were estimated, with the final aim of yielding suggestions how to optimize surveillance. Results: For swine dysentery, the median annual surveillance sensitivity was 96.7 %, mean time to detection 4.4 months, and total annual costs 1022.20 Euro/herd. The median component sensitivity of active sampling was between 62.5 and 77.0 %, that of a MF between 7.2 and 12.7 %. For progressive atrophic rhinitis, the median surveillance sensitivity was 99.4 %, mean time to detection 3.1 months and total annual costs 842.20 Euro. The median component sensitivity of active sampling was 81.7 %, that of a MF between 19.4 and 38.6 %. Conclusions: Results indicate that total sensitivity for both diseases is high, while time to detection could be a risk in herds with frequent pig trade. From all components, active sampling had the highest contribution to the surveillance sensitivity, whereas that of MF was very low. To increase efficiency, active sampling should be intensified (more animals sampled) and MF abandoned. This would significantly improve sensitivity and time to detection at comparable or lower costs. The method of scenario tree modelling proved useful to assess the efficiency of surveillance at herd level. Its versatility allows adjustment to all kinds of surveillance scenarios to optimize sensitivity, time to detection and/or costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Ductal carcinoma in situ (DCIS) is a noninvasive breast lesion with uncertain risk for invasive progression. Usual care (UC) for DCIS consists of treatment upon diagnosis, thus potentially overtreating patients with low propensity for progression. One strategy to reduce overtreatment is active surveillance (AS), whereby DCIS is treated only upon detection of invasive disease. Our goal was to perform a quantitative evaluation of outcomes following an AS strategy for DCIS. METHODS Age-stratified, 10-year disease-specific cumulative mortality (DSCM) for AS was calculated using a computational risk projection model based upon published estimates for natural history parameters, and Surveillance, Epidemiology, and End Results data for outcomes. AS projections were compared with the DSCM for patients who received UC. To quantify the propagation of parameter uncertainty, a 95% projection range (PR) was computed, and sensitivity analyses were performed. RESULTS Under the assumption that AS cannot outperform UC, the projected median differences in 10-year DSCM between AS and UC when diagnosed at ages 40, 55, and 70 years were 2.6% (PR = 1.4%-5.1%), 1.5% (PR = 0.5%-3.5%), and 0.6% (PR = 0.0%-2.4), respectively. Corresponding median numbers of patients needed to treat to avert one breast cancer death were 38.3 (PR = 19.7-69.9), 67.3 (PR = 28.7-211.4), and 157.2 (PR = 41.1-3872.8), respectively. Sensitivity analyses showed that the parameter with greatest impact on DSCM was the probability of understaging invasive cancer at diagnosis. CONCLUSION AS could be a viable management strategy for carefully selected DCIS patients, particularly among older age groups and those with substantial competing mortality risks. The effectiveness of AS could be markedly improved by reducing the rate of understaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of transient elastography in clinical practice has allowed the early identification of patients with chronic liver disease (CLD) at risk of developing clinically significant portal hypertension (CSPH) (1b;A).