915 resultados para importance analysis
Resumo:
As sustainability becomes an integral design driver for current civil structures, new materials and forms are investigated. The aim of this study is to investigate analytically and numerically the mechanical behavior of monolithic domes composed of mycological fungi. The study focuses on hemispherical and elliptical forms, as the most typical solution for domes. The influence of different types of loading, geometrical parameters, material properties and boundary conditions is investigated in this study. For the cases covered by the classical shell theory, a comparison between the analytical and the finite element solution is given. Two case studies regarding the dome of basilica of “San Luca” (Bologna, Italy) and the dome of sanctuary of “Vicoforte” (Vicoforte, Italy) are included. After the linear analysis under loading, buckling is also investigated as a critical type of failure through a parametric study using finite elements model. Since shells rely on their shape, form-found domes are also investigated and a comparison between the behavior of the form-found domes and the hemispherical domes under the linear and buckling analysis is conducted. From the analysis it emerges that form-finding can enhance the structural response of mycelium-based domes, although buckling becomes even more critical for their design. Furthermore, an optimal height to span ratio for the buckling of form-found domes is identified. This study highlights the importance of investigating appropriate forms for the design of novel biomaterial-based structures.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
The relationship between uncertainty and firms’ risk-taking behaviour has been a focus of investigation since early discussion of the nature of enterprise activity. Here, we focus on how firms’ perceptions of environmental uncertainty and their perceptions of the risks involved impact on their willingness to undertake green innovation. Analysis is based on a cross-sectional survey of UK food companies undertaken in 2008. The results reinforce the relationship between perceived environmental uncertainty and perceived innovation risk and emphasise the importance of macro-uncertainty in shaping firms’ willingness to undertake green innovation. The perceived (market-related) riskiness of innovation also positively influences the probability of innovating, suggesting either a proactive approach to stimulating market disruption or an opportunistic approach to innovation leadership.
Resumo:
The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.
Resumo:
This research adds to a body of work exploring the role of Social Network Analysis (SNA) in the study of both relational and structural characteristics of supply chain networks. Two contrasting network cases (food enterprises and digital-based enterprises) are chosen in order to elicit structural differences in business networks subject to divergences in local embeddedness and the relative materiality of the goods and services produced. Our analysis and findings draw out differences in network structure as evidenced by metrics of network centralization and cohesion, the presence of components and other sub-groupings, and the position of central actors. We relate these structural features both to the nature of the networks and to the (qualitative) experiences of the actors themselves. We find, in particular, the role of customers as co-creators of knowledge (for the Food network), the central role of infrastructure and services (for the Digital network), the importance of ICT as a source of codified knowledge inputs, along with the continuing importance of geographical proximity for the development and transfer of tacit knowledge and for incremental learning.
Resumo:
Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.
We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.
We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.
The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.
Resumo:
This is a practitioner doctorate aimed at both Universities about to introduce Entrepreneurship as a subject and practitioners who may be turning to teaching what they know building on their business experience. In this Portfolio the transition from Entrepreneur to Lecturer in Entrepreneurship is explored and several approaches were used to support the transition. A Professional Development Memoir offers a review of the life of an entrepreneur through the lens of Meaning Making Systems in order to bring clarity to the theories used by the Entrepreneur implicitly in his practice. Reflecting on these theories offers insight as to how the entrepreneur perceived and acted on market opportunities. Imparting some of the knowledge accumulated from practice is one goal in teaching. Economics and pedagogical theories were identified, researched and applied to inform the structure, design and delivery of a module in Entrepreneurship within a post graduate programme that focussed on business practice. Theories of Entrepreneurship grounded in Economics indicate the importance of this business function within the broad Economic System for economic development. The role of theory is to offer students ways of organising how they think about entrepreneurship. Gardner’s Teaching for Understanding framework is used to bring structure to the development of the module. Several leading exemplars on the teaching of Entrepreneurship are attended to offer a context both for the content of the Module and its subsequent implementation within a framework of best practice in the teaching of Entrepreneurship. The practical running of a business by the students as a central element of the Module provided a deep and valuable learning experience allowing them to experience Entrepreneurship in a real way for themselves.
Resumo:
The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements.
Resumo:
Marine Areas for Responsible Artisanal Fishing (AMPR) have emerged as a new model for co-managing small-scale fisheries in Costa Rica, one that involves collaboration between fishers, government agencies and NGOs. This thesis aims to examine the context for collective action and co-management by small-scale fishers; evaluate the design, implementation, and enforcement of AMPRs; and conduct a linguistic analysis of fisheries legislation. The present work relies on the analysis of several types of qualitative data, including interviews with 23 key informants, rapid rural assessments, and legal documents. Findings demonstrate the strong influence of economic factors for sustaining collective action, as well as the importance of certain types of external organizations for community development and co-management. Additionally, significant enforcement gaps and institutional deficiencies were identified in the work of regulating agencies. Legal analysis suggests that mechanisms for government accountability are unavailable and that legal discourse reflects some of the most salient problems in management.
Resumo:
This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
Policy makers are often called upon to navigate between scientists’ urgent calls for long-term concerted action to reduce the environmental impacts due to resource use, and the public’s concerns over policies that threaten lifestyles or jobs. Against these political challenges, resource efficiency policy making is often a changeable and even chaotic process, which has fallen short of the political ambitions set by democratically elected governments. This article examines the importance of paradigms in understanding how the public collectively responds to new policy proposals, such as those developed within the project DYNAmic policy MiXes for absolute decoupling of environmental impact of EU resource use from economic growth (DYNAMIX). The resulting proposed approach provides a framework to understand how different concerns and worldviews converge within public discourse, potentially resulting in paradigm change. Thus an alternative perspective on how resource efficiency policy can be development is proposed, which envisages early policies to lay the ground for future far-reaching policies, by altering the underlying paradigm context in which the public receive and respond to policy. The article concludes by arguing that paradigm change is more likely if the policy is conceived, framed, designed, analyzed, presented, and evaluated from the worldview or paradigm pathway that it seeks to create (i.e. the destination paradigm).
Resumo:
This qualitative study explores the barriers and dilemmas faced by beginning and novice mentors in post-compulsory education in the southeast of England. It analyses critical incidents (Tripp, 2012) taken from the everyday practice of mentors who were supporting new teachers and lecturers in the southeast of England. It categorises different types of critical incidents that mentors encountered and describes the strategies and rationales mentors used to support mentees and (indirectly) their learners and colleagues. The study explores ways in which mentors' own values, beliefs and life experiences affected their mentoring practice. Methodology As part of a specialist master’s-level professional development module, 21 mentors wrote about two critical incidents (Tripp, 2012) taken from their own professional experiences, which aimed to demonstrate their support for their mentee’s range of complex needs. These critical incidents were written up as short case studies, which justified the rationale for their interventions and demonstrated the mentors' own professional development in mentoring. Critical incidents were used as units of analysis and categorised thematically by topic, sector and mentoring strategies used. Findings The research demonstrated the complex nature of decision-making and the potential for professional learning within a mentoring dyad. The study of these critical incidents found that mentors most frequently cited the controversial nature of teaching observations, the mentor’s role in mediating professional relationships, the importance of inculcating professional dispositions in education, and the need to support new teachers so that they can use effective behaviour management strategies. This study contributes to our understanding of the central importance of mentoring for professional growth within teacher education. It identifies common dilemmas that novice mentors face in post-compulsory education, justifies the rationale for their interventions and mentoring strategies, and helps to identify ways in which mentors' professional development needs can be met. It demonstrates that mentoring is complex, non-linear and mediated by mentors’ motivation and values.
Resumo:
Advertising investment and audience figures indicate that television continues to lead as a mass advertising medium. However, its effectiveness is questioned due to problems such as zapping, saturation and audience fragmentation. This has favoured the development of non-conventional advertising formats. This study provides empirical evidence for the theoretical development. This investigation analyzes the recall generated by four non-conventional advertising formats in a real environment: short programme (branded content), television sponsorship, internal and external telepromotion versus the more conventional spot. The methodology employed has integrated secondary data with primary data from computer assisted telephone interviewing (CATI) were performed ad-hoc on a sample of 2000 individuals, aged 16 to 65, representative of the total television audience. Our findings show that non-conventional advertising formats are more effective at a cognitive level, as they generate higher levels of both unaided and aided recall, in all analyzed formats when compared to the spot.
Resumo:
Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.