985 resultados para ice skating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen annually resolved accumulation-rate records covering the last similar to 200 years from the Pine Island-Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island-Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (Sol) for sites near the ice divide, and periods of sustained negative Sol (1940-42, 1991-95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the midlatitudes. The post-1970 increase in accumulation coupled with strong SLP-accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island-Thwaites drainage system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using US National Centers for Environmental Prediction/US National Center for Atmospheric Research re-analysis data, we investigate the relationships between crustal ion (nssCa(2+)) concentrations from three West Antarctic ice cores, namely, Siple Dome (SD), ITASE00-1 (IT001) and ITASE01-5 (IT015), and primary components of the climate system, namely, air pressure/geopotential height, zonal (u) and meridional (v) wind strength. Linear correlation analyses between nssCa(2+) concentrations and both air-pressure and wind fields for the period of overlap between records indicate that the SD nssCa(2+) variation is positively correlated with spring circumpolar zonal wind, while IT001 nssCa(2+) has a positive correlation with circumpolar zonal wind throughout the year (r > 0.3, p < 0.01). Intensified Southern Westerlies circulation is conducive to transport of more crustal aerosols to both sites. Further correlation analyses between nssCa(2+) concentrations from SD and IT001 and atmospheric circulation suggest that the high inland plateau (represented by core IT001) is largely influenced by transport from the upper troposphere. IT015 nssCa(2+) is negatively correlated with westerly wind in October and November, suggesting that stronger westerly circulation may weaken the transport of crustal species to IT015. Correlations of nssCa(2+) from the three ice cores with the Antarctic Oscillation index are consistent with results developed from the wind-field investigation. In addition, calibration between nssCa(2+) concentration and the multivariate El Nino-Southern Oscillation (ENSO) index shows that crustal species transport to IT001 is enhanced during strong ENSO events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic and chemical signatures for ice-age and Holocene ice from Summit, Greenland and Penny Ice Cap, Baffin Island, Canada, arc compared. The usual pattern of low delta(18)O, high Ca2+ and high Cl- is presented in the Summit records, but Penny Ice Cap has lower than present Cl- in its ice-age ice. A simple extension of the Hansson model (Hansson, 1994) is developed and used to simulate these signatures. The low ice-age Cl- from Penny Ice Cap is explained by having the ice-age ice originating many thousands of km inland near the centre of the Laurentide ice sheet and much further from the marine sources. Summit's flowlines all start close to the present site. The Penny Ice Cap early-Holocene delta(18)O's had to be corrected to offset the Laurentide meltwater distortion. The analysis suggests that presently the Summit and Penny Ice Cap marine impurity originates about,500 km away, and that presently Penny Ice Cap receives a significant amount of local continental impurity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33 degrees 34'37.80 '' N, 91 degrees 10'35.3 '' E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes ( delta(18)O), major soluble ions (Na(+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-), SO(4)(2-)), and radionuclide (beta-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heinrich layers of the glacial North Atlantic record abrupt widespread iceberg rafting of detrital carbonate and other lithic material at the extreme-cold culminations of Bond climate cycles. Both internal (glaciologic) and external ( climate) forcings have been proposed. Here we suggest an explanation for the iceberg release that encompasses external climate forcing on the basis of a new glaciological process recently witnessed along the Antarctic Peninsula: rapid disintegrations of fringing ice shelves induced by climate-controlled meltwater infilling of surface crevasses. We postulate that peripheral ice shelves, formed along the eastern Canadian seaboard during extreme cold conditions, would be vulnerable to sudden climate-driven disintegration during any climate amelioration. Ice shelf disintegration then would be the source of Heinrich event icebergs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamical model, developed to account for the observed major variations of global ice mass and atmospheric CO2 during the late Cenozoic, is used to provide a quantitative demonstration of the possibility that the anthropogenically-forced increase of atmospheric CO2, if maintained over a long period of time (perhaps by tectonic forcing), could displace the climatic system from an unstable regime of oscillating ice ages into a more stable regime representative of the pre-Pleistocene. This stable regime is characterized by orbitally-forced oscillations that are of much weaker amplitude than prevailed during the Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The floating terminal of Jakobshavn Isbr ae, the fastest Greenland ice stream, has disintegrated since 2002, resulting in a doubling of ice velocity and rapidly lowering inland ice elevations. Conditions prior to disintegration were modeled using control theory in a plane-stress solution, and the Missoula model of ice-shelf flow. Both approaches pointed to a mechanism that inhibits ice flow and that is not captured by either approach. Jamming of flow, an inherent property of granular materials passing through a constriction (Jakobshavn Isfjord), is postulated as the mechanism. Rapid disintegration of heavily crevassed floating ice accompanies break-up of the ice jam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured the CO2 concentration of air occluded during the last 40,000 years in the deep Siple Dome A ( hereafter Siple Dome) ice core, Antarctica. The general trend of CO2 concentration from Siple Dome ice follows the temperature inferred from the isotopic composition of the ice and is mostly in agreement with other Antarctic ice core CO2 records. CO2 rose initially at similar to 17.5 kyr B. P. ( thousand years before 1950), decreased slowly during the Antarctic Cold Reversal, rose during the Younger Dryas, fell to a local minimum at around 8 kyr B. P., and rose continuously since then. The CO2 concentration never reached steady state during the Holocene, as also found in the Taylor Dome and EPICA Dome C ( hereafter Dome C) records. During the last glacial termination, a lag of CO2 versus Siple Dome isotopic temperature is probable. The Siple Dome CO2 concentrations during the last glacial termination and in the Holocene are at certain times greater than in other Antarctic ice cores by up to 20 ppm (mumol CO2/mol air). While in situ production of CO2 is one possible cause of the sporadic elevated levels, the mechanism leading to the enrichment is not yet clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations in Wright Valley, adjacent to the Transantarctic Mountains in East Antarctica, shed light on the question of whether high-latitude Pliocene climate was warm enough to cause widespread deglaciation of the East Antarctic craton with a concurrent Magellanic moorland-like environment. If Pliocene age diatoms, presently in glaciogenic deposits high in the Transantarctic Mountains, had come from seaways on the East Antarctic craton, an expanding Late Pliocene ice sheet must have first eroded them from marine sediments and then deposited the diatoms at their present high-altitude locations. This hypothetical expanding glacier would have had to have come through Wright Valley. Glacial drift sediments from the central Wright Valley were mapped, sampled, analyzed, and Ar-40/Ar-39 whole rock dated. Our evidence indicates that an East Antarctic outlet glacier has not expanded through Wright Valley, and hence cannot have overridden the Dry Valleys sector of the Transantarctic Mountains, any time in the past 3.8 myr. Rather, there was only moderate Pliocene expansion of local cola-based alpine glaciers and continuous cold-desert conditions in Wright Valley. Persistence of a cold-desert paleoenvironment implies that the sector of the East Antarctic Ice Sheet adjacent to Wright Valley has remained relatively stable without melting ablation zones since at least 3.8 Ma, in Early Pliocene time. A further implication is that Antarctic Ice Sheet behavior in the Pliocene was much like that in the Quaternary, when the ice sheet consisted of a stable, terrestrial core in East Antarctica and a dynamic, marine-based appendage in West Antarctica.