995 resultados para hydrothermal stability
Resumo:
We consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called a forward-looking network formation scheme if, first, the probability that a link is created is positive if the discounted, expected gains to its two participants are positive, and if, second, the probability that a link is eliminated is positive if the discounted, expected gains to at least one of its two participants are positive. The main result is the existence, for all discount factors and all value functions, of a forward-looking network formation scheme. Furthermore, we can always nd a forward-looking network formation scheme such that (i) the allocation rule is component balanced and (ii) the transition probabilities increase in the di erence in payo s for the corresponding players responsible for the transition. We use this dynamic solution concept to explore the tension between e ciency and stability.
Resumo:
The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.
目录
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references
Resumo:
The seasonal stability tests of Canova & Hansen (1995) (CH) provide a method complementary to that of Hylleberg et al. (1990) for testing for seasonal unit roots. But the distribution of the CH tests are unknown in small samples. We present a method to numerically compute critical values and P-values for the CH tests for any sample size and any seasonal periodicity. In fact this method is applicable to the types of seasonality which are commonly in use, but also to any other.
Resumo:
Effects of chilled and frozen storage on specific enthalpy (ΔH) and transition temperature (Td) of protein denaturation as well as on selected functional properties of muscle tissue of rainbow trout and herring were investigated. The Td of myosin shifted from 39 to 33 °C during chilling of trout post mortem, but was also influenced by pH. Toughening during frozen storage of trout fillet was characterized by an increased storage modulus of a gel made from the raw fillet. Differences between long term and short term frozen stored, cooked trout fillet were identified by a compression test and a consumer panel. These changes did not affect the Td and ΔH of heat denaturation during one year of frozen storage at –20 °C. In contrast the Td of two myosin peaks of herring shifted during frozen storage at –20 °C to a significant lower value and overlaid finally. Myosin was aggregated by hydrophobic protein-protein interactions. Both thermal properties of myosin and chemical composition were sample specific for wild herring, but were relative constant for farmed trout samples over one year. Determination of Td was very precise (standard deviation <2 %) at a low scanning rate (≤ 0.25 K·min-1) and is useful for monitoring the quality of chilled and frozen stored trout and herring.
Resumo:
Effects of wall temperature on stabilities of hypersonic boundary layer over a 7-degree half-cone-angle blunt cone are studied by using both direct numerical simulation (DNS) and linear stability theory (LST) analysis. Four isothermal wall cases with Tw/T0= 0.5, 0.7, 0.8 and 0.9, as well as an adiabatic wall case are considered. Results of both DNS and LST indicate that wall temperature has significant effects on the growth of disturbance waves. Cooling the surface accelerates unstable Mack II mode waves and decelerates the first mode (Tollmien–Schlichting mode) waves. LST results show that growth rate of the most unstable Mack II mode waves for the cases of cold wall Tw/T0=0.5 and 0.7 are about 45% and 25% larger than that for the adiabatic wall, respectively. Numerical results show that surface cooling modifies the profiles of rdut/dyn and temperature in the boundary layers, and thus changes the stability haracteristic of the boundary layers, and then effects on the growth of unstable waves. The results of DNS indicate that the disturbances with the frequency range from about 119.4 to 179.1 kHz, including the most unstable Mack modes, produce strong mode competition in the downstream region from about 11 to 100 nose radii. And adiabatic wall enhances the amplitudes of disturbance according to the results of DNS, although the LST indicates that the growth rate of the disturbance of cold wall is larger. That because the growth of the disturbance does not only depend on the development of the second unstable mode.