865 resultados para human reliability assessment
Resumo:
OBJECTIVE: To assess patterns of seroreactivity to Leptospira serovars in veterinary professional staff and dog owners exposed to dogs with acute leptospirosis and to contrast these patterns in people with those observed in dogs. DESIGN: Cross-sectional study. SAMPLE POPULATION: Human subjects consisted of 91 people (50 veterinarians, 19 technical staff, 9 administrative personnel, and 13 dog owners) exposed to dogs with leptospirosis. Canine subjects consisted of 52 dogs with naturally occurring leptospirosis admitted to the University of Bern Vetsuisse Faculty Small Animal Clinic in 2007 and 2008. PROCEDURES: People were tested for seroreactivity to regionally prevalent Leptospira serovars by use of a complement fixation test. A questionnaire designed to identify risk factors associated with seropositivity was used to collect demographic information from each study participant. Dogs were tested for seroreactivity to Leptospira serovars by use of a microscopic agglutination test. RESULTS: On the basis of microscopic agglutination test results, infected dogs were seropositive for antibodies against Leptospira serovars as follows (in descending order): Bratislava (43/52 [83%]), Australis (43/52 [83%]), Grippotyphosa (18/52 [35%]), Pomona (12/52 [23%]), Autumnalis (6/52 [12%]), Icterohemorrhagiae (4/52 [8%]), Tarassovi (2/52 [4%]), and Canicola (1/52 [2%]). All 91 people were seronegative for antibodies against Leptospira serovars. Therefore, statistical evaluation of risk factors and comparison of patterns of seroreactivity to Leptospira serovars between human and canine subjects were limited to theoretical risks. CONCLUSIONS AND CLINICAL RELEVANCE: Seroreactivity to Leptospira serovars among veterinary staff adhering to standard hygiene protocols and pet owners exposed to dogs with acute leptospirosis was uncommon.
Resumo:
Thiel-embalmed human whole head specimens represent an alternative model in middle ear research.
Resumo:
Switzerland implemented a risk-based monitoring of Swiss dairy products in 2002 based on a risk assessment (RA) that considered the probability of exceeding a microbiological limit value set by law. A new RA was launched in 2007 to review and further develop the previous assessment, and to make recommendations for future risk-based monitoring according to current risks. The resulting qualitative RA was designed to ascertain the risk to human health from the consumption of Swiss dairy products. The products and microbial hazards to be considered in the RA were determined based on a risk profile. The hazards included Campylobacter spp., Listeria monocytogenes, Salmonella spp., Shiga toxin-producing Escherichia coli, coagulase-positive staphylococci and Staphylococcus aureus enterotoxin. The release assessment considered the prevalence of the hazards in bulk milk samples, the influence of the process parameters on the microorganisms, and the influence of the type of dairy. The exposure assessment was linked to the production volume. An overall probability was estimated combining the probabilities of release and exposure for each combination of hazard, dairy product and type of dairy. This overall probability represents the likelihood of a product from a certain type of dairy exceeding the microbiological limit value and being passed on to the consumer. The consequences could not be fully assessed due to lack of detailed information on the number of disease cases caused by the consumption of dairy products. The results were expressed as a ranking of overall probabilities. Finally, recommendations for the design of the risk-based monitoring programme and for filling the identified data gaps were given. The aims of this work were (i) to present the qualitative RA approach for Swiss dairy products, which could be adapted to other settings and (ii) to discuss the opportunities and limitations of the qualitative method.
Resumo:
Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.
Resumo:
Human development causes degradation of stream ecosystems due to impacts on channel morphology, hydrology, and water quality. Urbanization, the second leading cause of stream impairment, increases the amount of impervious surface cover, thus reducing infiltration and increasing surface runoff of precipitation, which ultimately affects stream hydrologic process and aquatic biodiversity. The main objective of this study was to assess the overall health of Miller Run, a small tributary of the Bull Run and Susquehanna River watersheds, through an integrative hydrologic and water quality approach in order to determine the degree of Bucknell University’s impact on the stream. Hydrologic conditions, including stage and discharge, and water quality conditions, including total suspended solids, ion, nutrient, and dissolved metal concentrations, specific conductivity, pH, and temperature, were measured and evaluated at two sampling sites (upstream and downstream of Bucknell’s main campus) during various rain events from September 2007 to March 2008. The primary focus of the stream analysis was based on one main rain event on 26 February 2008. The results provided evidence that Miller Run is impacted by Bucknell’s campus. From a hydrologic perspective, the stream’s hydrograph showed the exact opposite pattern of what would be expected from a ‘normal’ stream. Miller run had a flashier downstream hydrograph and a broader upstream hydrograph, which was more than likely due to the increased amount of impervious surface cover throughout the downstream half of the watershed. From a water quality perspective, sediment loads increased at a faster rate and were significantly higher downstream compared to upstream. These elevated sediment concentrations were probably the combined result of sediment runoff from upstream and downstream construction sites that were being developed over the course of the study. Sodium, chloride, and potassium concentrations, in addition to specific conductivity, also significantly increased downstream of Bucknell’s campus due to the runoff of road salts. Calcium and magnesium concentrations did not appear to be impacted by urbanization, although they did demonstrate a significant dilution effect downstream. The downstream site was not directly affected by elevated nitrate concentrations; however, soluble reactive phosphorus concentrations tended to increase downstream and ammonium concentrations significantly peaked partway through the rain event downstream. These patterns suggest that Miller Run may be impacted by nutrient runoff from the golf course, athletic fields, and/or fertilizers applications on the main campus. Dissolved manganese and iron concentrations also appeared to slightly increase downstream, demonstrating the affect of urban runoff from roads and parking lots. pH and temperature both decreased farther downstream, but neither showed a significant impact of urbanization. More studies are necessary to determine how Miller Run responds to changes in season, climate, precipitation intensity, and land-use. This study represents the base-line analysis of Miller Run’s current hydrologic and water quality conditions; based on these initial findings, Bucknell should strongly consider modifications to improve storm water management practices and to reduce the campus’s overall impact on the stream in order to enhance and preserve the integrity of its natural water resources.
Resumo:
We evaluated the suitability of single and multiple cell type cultures as model systems to characterise cellular kinetics of highly lipophilic compounds with potential ecotoxicological impact. Confluent mono-layers of human skin fibroblasts, rat astrocytoma C6 cells, non-differentiated and differentiated mouse 3T3 cells were kept in culture medium supplemented with 10% foetal calf serum. For competitive uptake experiments up to four different cell types, grown on glass sectors, were exposed for 3h to (14)C-labelled model compounds, dissolved either in organic solvents or incorporated into unilamellar lecithin liposomes. Bromo-, or chloro-benzenes, decabromodiphenylether (DBP), and dichlorodiphenyl ethylene (DDE) were tested in rather high concentration of 20 microM. Cellular toxicity was low. Compound levels were related to protein, DNA, and triglyceride contents. Cellular uptake was fast and dependent on physico-chemical properties of the compounds (lipophilicity, molecular size), formulation, and cell type. Mono-halogenated benzenes showed low and similar uptake levels (=low accumulation compounds). DBP and DDE showed much higher cellular accumulations (=high accumulation compounds) except for DBP in 3T3 cells. Uptake from liposomal formulations was mostly higher than if compounds were dissolved in organic solvents. The extent of uptake correlated with the cellular content of triglycerides, except for DBP. Uptake competition between different cell types was studied in a sectorial multi-cell culture model. For low accumulation compounds negligible differences were found among C6 cells and fibroblasts. Uptake of DDE was slightly and that of DBP highly increased in fibroblasts. Well-defined cell culture systems, especially the sectorial model, are appropriate to screen for bioaccumulation and cytotoxicity of (unknown) chemical entities in vitro.
Resumo:
BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.
Resumo:
AIMS: Myocardial blood flow (MBF) is the gold standard to assess myocardial blood supply and, as recently shown, can be obtained by myocardial contrast echocardiography (MCE). The aims of this human study are (i) to test whether measurements of collateral-derived MBF by MCE are feasible during elective angioplasty and (ii) to validate the concept of pressure-derived collateral-flow assessment. METHODS AND RESULTS: Thirty patients with stable coronary artery disease underwent MCE of the collateral-receiving territory during and after angioplasty of 37 stenoses. MCE perfusion analysis was successful in 32 cases. MBF during and after angioplasty varied between 0.060-0.876 mL min(-1) g(-1) (0.304+/-0.196 mL min(-1) g(-1)) and 0.676-1.773 mL min(-1) g(-1) (1.207+/-0.327 mL min(-1) g(-1)), respectively. Collateral-perfusion index (CPI) is defined as the rate of MBF during and after angioplasty varied between 0.05 and 0.67 (0.26+/-0.15). During angioplasty, simultaneous measurements of mean aortic pressure, coronary wedge pressure, and central venous pressure determined the pressure-derived collateral-flow index (CFI(p)), which varied between 0.04 and 0.61 (0.23+/-0.14). Linear-regression analysis demonstrated an excellent agreement between CFI(p) and CPI (y=0.88 x +0.01; r(2)=0.92; P<0.0001). CONCLUSION: Collateral-derived MBF measurements by MCE during angioplasty are feasible and proved that the pressure-derived CFI exactly reflects collateral relative to normal myocardial perfusion in humans.
Resumo:
Hypoxia of renal medulla is a key factor implicated in the development of drug-induced renal failure. Drugs are known to influence renal hemodynamics and, subsequently, affect renal tissue oxygenation. Changes in renal oxygenation can be assessed non-invasively in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI). This study was designed to test the acute effects of administration of specific drugs in healthy human kidney oxygenation using BOLD-MRI. Acute changes in renal tissue oxygenation induced by the non-steroidal anti-inflammatory drug indomethacin, the iodinated radio-contrast media (RCM) iopromidum, and the calcineurin inhibitors cyclosporine micro-emulsion (CsA-ME) and tracrolimus were studied in 30 healthy volunteers. A modified Multi Echo Data Image Combination sequence was used to acquire 12 T(2)(*)-weighted images. Four coronal slices were selected to cover both kidneys. The mean R(2)(*) (1/T(2)(*)) values determined in medulla and cortex showed no significant changes induced by indomethacin and tacrolimus administration. CsA-ME decreased medullary (P=0.008) and cortical (P=0.004) R(2)(*) values 2 h after ingestion. Iopromidum caused a significant increase in medullary R(2)(*) within the first 20 min after injection (P<0.001), whereas no relevant changes were observed in renal cortex. None of the measurements showed left-right kidney differences. Significant differences in renal medullary oxygenation were evidenced between female and male subjects (P=0.013). BOLD-MRI was efficient to show effects of specific drugs in healthy renal tissue. Cyclosporine increased renal medullary oxygenation 2 h after ingestion of a single dose, whereas indomethacin and tacrolimus showed no effect on renal oxygenation. Injection of iodinated RCM decreased renal medullary oxygenation.
Resumo:
A literature review of the most widely used condition specific, self administered assessment questionnaires for low back pain had been undertaken. General and historic aspects, reliability, responsiveness and minimum clinically important difference, external validity, floor and ceiling effects, and available languages were analysed. These criteria, however, are only part of the consideration. Of similar importance are the content, wording of questions and answers in each of the six questionnaires and an analysis of the different score results. The issue of score bias is discussed and suggestions are given in order to increase the construct validity in the practical use of the individual questionnaires.
Resumo:
Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.
Resumo:
OBJECTIVE: To assess the intra-reader and inter-reader reliabilities of interpreting ultrasonography by several experts using video clips. METHOD: 99 video clips of healthy and rheumatic joints were recorded and delivered to 17 physician sonographers in two rounds. The intra-reader and inter-reader reliabilities of interpreting the ultrasound results were calculated using a dichotomous system (normal/abnormal) and a graded semiquantitative scoring system. RESULTS: The video reading method worked well. 70% of the readers could classify at least 70% of the cases correctly as normal or abnormal. The distribution of readers answering correctly was wide. The most difficult joints to assess were the elbow, wrist, metacarpophalangeal (MCP) and knee joints. The intra-reader and inter-reader agreements on interpreting dynamic ultrasound images as normal or abnormal, as well as detecting and scoring a Doppler signal were moderate to good (kappa = 0.52-0.82). CONCLUSIONS: Dynamic image assessment (video clips) can be used as an alternative method in ultrasonography reliability studies. The intra-reader and inter-reader reliabilities of ultrasonography in dynamic image reading are acceptable, but more definitions and training are needed to improve sonographic reproducibility.
Resumo:
PURPOSE: To determine sensitivity, specificity and inter-observer variability of different whole-body MRI (WB-MRI) sequences in patients with multiple myeloma (MM). METHODS AND MATERIALS: WB-MRI using a 1.5T MRI scanner was performed in 23 consecutive patients (13 males, 10 females; mean age 63+/-12 years) with histologically proven MM. All patients were clinically classified according to infiltration (low-grade, n=7; intermediate-grade, n=7; high-grade, n=9) and to the staging system of Durie and Salmon PLUS (stage I, n=12; stage II, n=4; stage III, n=7). The control group consisted of 36 individuals without malignancy (25 males, 11 females; mean age 57+/-13 years). Two observers independently evaluated the following WB-MRI sequences: T1w-TSE (T1), T2w-TIRM (T2), and the combination of both sequences, including a contrast-enhanced T1w-TSE with fat-saturation (T1+/-CE/T2). They had to determine growth patterns (focal and/or diffuse) and the MRI sequence that provided the highest confidence level in depicting the MM lesions. Results were calculated on a per-patient basis. RESULTS: Visual detection of MM was as follows: T1, 65% (sensitivity)/85% (specificity); T2, 76%/81%; T1+/-CE/T2, 67%/88%. Inter-observer variability was as follows: T1, 0.3; T2, 0.55; T1+/-CE/T2, 0.55. Sensitivity improved depending on infiltration grade (T1: 1=60%; 2=36%; 3=83%; T2: 1=70%; 2=71%; 3=89%; T1+/-CE/T2: 1=50%; 2=50%; 3=89%) and clinical stage (T1: 1=58%; 2=63%; 3=79%; T2: 1=58%; 2=88%; 3=100%; T1+/-CE/T2: 1=50%; 2=63%; 3=100%). T2w-TIRM sequences achieved the best reliability in depicting the MM lesions (65% in the mean of both readers). CONCLUSIONS: T2w-TIRM sequences achieved the highest level of sensitivity and best reliability, and thus might be valuable for initial assessment of MM. For an exact staging and grading the examination protocol should encompass unenhanced and enhanced T1w-MRI sequences, in addition to T2w-TIRM.
Resumo:
The objectives of this study were to develop and validate a tool for assessing pain in population-based observational studies and to develop three subscales for back/neck, upper extremity and lower extremity pain. Based on a literature review, items were extracted from validated questionnaires and reviewed by an expert panel. The initial questionnaire consisted of a pain manikin and 34 items relating to (i) intensity of pain in different body regions (7 items), (ii) pain during activities of daily living (18 items) and (iii) various pain modalities (9 items). Psychometric validation of the initial questionnaire was performed in a random sample of the German-speaking Swiss population. Analyses included tests for reliability, correlation analysis, principal components factor analysis, tests for internal consistency and validity. Overall, 16,634 of 23,763 eligible individuals participated (70%). Test-retest reliability coefficients ranged from 0.32 to 0.97, but only three coefficients were below 0.60. Subscales were constructed combining four items for each of the subscales. Item-total coefficients ranged from 0.76 to 0.86 and Cronbach's alpha were 0.75 or higher for all subscales. Correlation coefficients between subscales and three validated instruments (WOMAC, SPADI and Oswestry) ranged from 0.62 to 0.79. The final Pain Standard Evaluation Questionnaire (SEQ Pain) included 28 items and the pain manikin and accounted for the multidimensionality of pain by assessing pain location and intensity, pain during activity, triggers and time of onset of pain and frequency of pain medication. It was found to be reliable and valid for the assessment of pain in population-based observational studies.