880 resultados para hospital discharge
Resumo:
研究在空气中使用1.06#mu#m YAG激光诱导放电打孔的方法。在不同的放电脉宽下进行激光诱导放电打孔的实验,比较了激光打孔和激光诱导放电打孔两种方法,指出了激光诱导放电打孔的优点。
Resumo:
En el mes de octubre del año pasado se realizó en la Facultad una Reunión de Claustro en la que participamos unos cuarenta profesores, reunidos para conversar e intercambiar ideas acerca de la entrevista que el P. Antonio Spadaro S.J. le hiciera al papa Francisco. Como los temas abordados allí fueron muchos, nos pareció oportuno señalar los que podían interesar de manera más directa a nuestra Facultad. En el diálogo tuvimos presente esa perspectiva, la de la posible recepción o incidencia entre nosotros de algunas de las afirmaciones hechas en esa entrevista. La conversación giró en torno a cuatro grandes campos temáticos: Eclesiológico; Pastoral-Moral; Espiritualidad; Diálogo fe-cultura. Haciéndome eco de esa rica experiencia, que seguramente se prolongará en el presente año académico, quisiera retener un párrafo de dicha entrevista, a partir del cual intentaré reflexionar manteniendo la misma perspectiva, a saber, la de su posible incidencia en la vida de nuestra Facultad...
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Un modelo de programación por metas para la elaboración del contrato-programa de un hospital público
Resumo:
[ES] Proponemos un modelo de programación por metas para la estimación del plan de producción (case-mix) que debe reflejarse en el Contrato–Programa que suscriben anualmente los Hospitales Públicos y la Administración. Las variables de decisión son los volúmenes de actividad de cada servicio médico del hospital y los atributos son los indicadores básicos que se manejan al elaborar el Contrato-Programa: fi nanciación, número de altas, estancia media y peso de complejidad. Para resolver nuestro modelo empleamos la herramienta SOLVER de la hoja de cálculo EXCEL. La utilización de esta herramienta permite simular varios escenarios de una manera ágil, lo que es de gran ayuda para el estudio y discusión de las cantidades a contratar entre el Hospital y la Administración. El artículo finaliza con una breve presentación de los resultados obtenidos al aplicar nuestro modelo a un hospital de tamaño medio (118 camas) del Servicio Vasco de Salud.
Resumo:
Ponencia presentada en I Congreso de Estudios Históricos del Condado de Treviño: 850 aniversario de la fundación de la Villa de Treviño, celebrado los días 1,2 y 3 de junio de 2011 en Treviño (Condado de Treviño)
Resumo:
The GlidArc discharge is one of the main generation methods of non-equilibrium plasma near atmospheric pressures. In general, Gliding Arc discharge is driven by gas flow [1] in axial direction or by magnetic field in circumferential direction. [2] In this paper, a GlidArc discharge driven by rotating-gas-flow in circumferential direction is presented. The principle of the plasma generator is analyzed. The distribution of the temperature in axial direction is measured by a digital thermometer for three different gases. The experimental set-up of the GlidArc plasma is shown in Fig.1. It consists of a center electrode, an outside electrode, a power supply and a gas supply. The shortest distance between the electrodes is 2-3 mm. When a power supply with 10000 volts is attached to the electrodes, the arc will be ignited at the shortest distance. The small plasma column is rotated by the rotating gas flow in circumferential direction and then the rotating arc is driven towards the exit of the setup by the gas flow.
Resumo:
Nowadays due to the crisis, some government measures are aimed at reducing healthcare spending, affecting in some level or another the quality offered. Process management is said to be a useful tool for reducing healthcare costs by improving management without any additional economic investment. That is doing more with the same resources and without reducing the quality offered. In this study an empirical case of a Catalan hospital is presented. Overall, the usefulness of process management in the healthcare sector is shown and some tips are provided for those managers that want to implement this management system in their hospitals. This work is also interesting for those managers responsible for the National Healthcare System due to a big question is stated: what would happen if process management was implemented in the whole healthcare system?
Resumo:
Background: Patients with chronic obstructive pulmonary disease (COPD) often experience exacerbations of the disease that require hospitalization. Current guidelines offer little guidance for identifying patients whose clinical situation is appropriate for admission to the hospital, and properly developed and validated severity scores for COPD exacerbations are lacking. To address these important gaps in clinical care, we created the IRYSS-COPD Appropriateness Study. Methods/Design: The RAND/UCLA Appropriateness Methodology was used to identify appropriate and inappropriate scenarios for hospital admission for patients experiencing COPD exacerbations. These scenarios were then applied to a prospective cohort of patients attending the emergency departments (ED) of 16 participating hospitals. Information was recorded during the time the patient was evaluated in the ED, at the time a decision was made to admit the patient to the hospital or discharge home, and during follow-up after admission or discharge home. While complete data were generally available at the time of ED admission, data were often missing at the time of decision making. Predefined assumptions were used to impute much of the missing data. Discussion: The IRYSS-COPD Appropriateness Study will validate the appropriateness criteria developed by the RAND/UCLA Appropriateness Methodology and thus better delineate the requirements for admission or discharge of patients experiencing exacerbations of COPD. The study will also provide a better understanding of the determinants of outcomes of COPD exacerbations, and evaluate the equity and variability in access and outcomes in these patients.
Resumo:
Several discharge areas by laser-guided discharge (LGD) were compared with those by common arc discharge. The randomicity of discharge areas by common arc discharge was controlled by laser guiding on two scales: large scale (the spacing of the discharge areas) and small scale (the inside of the discharge area). The position of the discharge area overlapped completely with a laser focus; therefore, the distribution and surface shape of the discharge areas were controlled. The stochastic movement of anode spot in the discharge area was controlled by laser guiding. As such, the repetitive melting and solidifying of microstructures in the discharge area was constrained. The tempered microstruc- tures in the discharge area were voided, the utilization efficiency of input energy was improved, and the strengthened depth of the discharge areas was increased. The regularity of cross-sectional shape of the discharge area was also improved. The hardness of microstructures in both discharge areas is greater than that of the base material. The highest level of hardness of microstructures in both discharge areas measures above 1000 HV. In summary, the hardness ofmicrostructures in the discharge area by LGD is larger and more discrete than that by common arc discharge.
Resumo:
Microwave noise emission at the harmonics of the electron cyclotron frequency from the magnetized plasma column of a Penning discharge is investigated experimentally. The harmonic emission spectrum is observed using oxygen gas in a variety of discharge configurations. It is found that grid stabilization of the plasma column has very little effect on the emission spectrum. Measurements of the shape and location of the harmonic emission lines are described in detail. On the basis of a microwave interferometer measurement of the electron density, it is concluded that the existence of a hybrid layer somewhere on the plasma column is a necessary condition for the observation of harmonic emission. The relaxation time and the cathode voltage dependence of the harmonic emission are investigated using a pulse modulation technique. It is found that the emission intensity increases rapidly with the magnitude of the cathode voltage and that the relaxation time decreases with increasing neutral gas pressure. High intensity nonharmonic radiation is observed and identified as resulting from a beam-plasma wave instability thereby eliminating the same instability as a possible source of the harmonic emission. It is found that the collective experimental results are in reasonable agreement with the single particle electrostatic radiation theory of Canobbio and Croci.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
Pesquisa realizada em um Hospital Universitário do Estado do Rio de Janeiro, através de uma abordagem quantitativa descritiva, com objetivo de identificar os fatores de riscos ambientais presentes nas situações de trabalho dos profissionais de enfermagem, a partir da observação sistemática dos locais de trabalho pelos profissionais de saúde e segurança do trabalho e dos chefes de enfermagem de clínicas de um Hospital Universitário, visando gerar resultados que possam trazer a discussão, os riscos ocupacionais aos quais estão expostos os profissionais de enfermagem, seu conhecimento a respeito destes riscos e sua atuação na identificação e ação sobre os mesmos. A população foi composta por treis profissionais de saúde e segurança no trabalho e trinta enfermeiros chefes de unidade de internação. Para a coleta de dados foi utilizado um questionário fechado proposto no Guia de Avaliação de Riscos nos Locais de Trabalho de Boix e Vogel (1997) e adaptado para aplicação em estabelecimentos de saúde por Mauro (2001). Os dados foram analisados através do software Statical Package for the Social Sciences (SPSS) versão 15.0. Os resultados evidenciaram que os fatores de riscos ocupacionais de maior relevância do estudo foram: os sistemas inadequados de prevenção de incêndio, de saída de emergência e dispositivos e instruções de segurança e manutenção preventiva inadequada, exposição à riscos biológicos, desenho arquitetônico dos locais de trabalho inadequado, distribuição inadequada de pessoal e conhecimento ergonômico insuficiente do trabalhador. Estes fatores atuam de forma direta ou indireta nos locais de trabalho, propiciando aos profissionais um ambiente desfavorável para a realização das atividades, o que pode comprometer a sua saúde e vida profissional. Concluiu-se que os profissionais enfermeiros no cargo de gestores, em sua maioria, não possuem a visibilidade sobre os fatores de riscos aos quais eles próprios e a equipe sob sua gerência encontram-se expostos, mesmo porque desempenham suas tarefas quase em sua integralidade com alto risco de acidentes e doenças. O estudo proporcionou melhor compreensão dos fatores de risco presentes no ambiente, suas repercussões no processo de trabalho de enfermagem e na saúde dos profissionais, da importância da inserção e comprometimento dos gestores sobre os fatores de risco no ambiente de trabalho e da ergonomia participativa na análise e prevenção de riscos ocupacionais.
Resumo:
An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.
The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.
The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.
In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.
The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.