915 resultados para high pressure torsion


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure and properties of a newly emerged solar active region (NOAA Active Region 7985) are discussed using the Coronal Diagnostic Spectrometer (CDS) and the Extreme- Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory. CDS obtained high-resolution EUV spectra in the 308-381 Angstrom and 513-633 Angstrom wavelength ranges, while EIT recorded full-disk EUV images in the He II (304 Angstrom), Fe IX/X (171 Angstrom), Fe xii (195 Angstrom), and Fe XV (284 Angstrom) bandpasses. Electron density measurements from Si rx, Si X, Fe xii, Fe XIII, and Fe xiv line ratios indicate that the region consists of a central high- density core with peak densities of the order of 1.2 x 10(10) cm(-3), which decrease monotonically to similar to5.0 X 10(8) cm(-3) at the active region boundary. The derived electron densities also vary systematically with temperature. Electron pressures as a function of both active region position and temperature were estimated using the derived electron densities and ion formation temperatures, and the constant pressure assumption was found to be an unrealistic simplification. Indeed, the active region is found to have a high-pressure core (1.3 x 10(16) cm(-3) K) that falls to 6.0 x 10(14) cm(-3) K just outside the region. CDS line ratios from different ionization stages of iron, specifically Fe xvi (335.4 Angstrom) and Fe xiv (334.4 Angstrom), were used to diagnose plasma temperatures within the active region. Using this method, peak temperatures of 2.1 x 10(6) K were identified. This is in good agreement with electron temperatures derived using EIT filter ratios and the two-temperature model of Zhang et al. The high- temperature emission is confined to the active region core, while emission from cooler (1-1.6) x 10(6) K lines originates in a system of loops visible in EIT 171 and 195 X images. Finally, the three-dimensional geometry of the active region is investigated using potential field extrapolations from a Kitt Peak magnetogram. The combination of EUV and magnetic field extrapolations extends the "core-halo" picture of active region structure to one in which the core is composed of a number of compact coronal loops that confine the hot, dense, high- pressure core plasma while the halo emission emerges from a system of cooler and more extended loops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1e) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M-r of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M-r 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to -9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 mug (.) kg(-1) (.) min(-1), followed by 2 h at 83.0 mug (.) kg(-1) (.) min(-1); corresponding to 0.4 and 2.0 mU (.) kg(-1) (.) min(-1)). At the lower dose, the exogenons glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comparisons of 2D fluid simulations with experimental measurements of Ar/Cl-2 plasmas in a low-pressure inductively coupled reactor are reported. Simulations show that the wall recombination coefficient of Cl atom (gamma) is a crucial parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for gamma = 0.02, which is much lower than the value predicted for stainless steel walls (gamma = 0.6). This is consistent with reactor wall contaminations classically observed in such discharges. The electron density, negative ion fraction and Cl atom density have been investigated under various conditions of chlorine and argon concentrations, gas pressure and applied rf input power. The plasma electronegativity decreases with rf power and increases with chlorine concentration. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experimental trends are well reproduced by the simulations, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature. © 2010 Bentham Science Publishers Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the reaction products namely, 5 and 6 carbon sugars. Process parameters investigated included, reactor temperature (from 135 degrees C to 200 degrees C) and acid concentration (from 2.5% (w/w) to 10% (w/w)). Analysis of the reactor products indicated that high conversion of cellulose to glucose was apparent although arabinose conversion was quite low due to thermally un-stability. However, an overall sugar yield is 82.5% was achieved under optimum conditions. This optimum yield was obtained at 135 degrees C and 10% (w/w) acid concentration. 55.2 g sugar/100 g dry potato peel is produced after a time of 8 min. The work indicates that the use of potato peel may be a feasible option as a feed material for the production of sugars for biofuel synthesis, due its low cost and high sugar yields. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interactions of coal with CO2 at pressures of up to 30 bar concerning mechanisms of diffusion, the strength of interactions, and the irreversibility of uptake for the permanent disposal of CO2 into coal fields have been studied. Differential scanning calorimetry was used to investigate coal/CO2 interactions for North Dakota, Wyodak, Illinois No. 6, and Pittsburgh No. 8 coals. It was found that the first interactions of CO2 with coals led to strongly bound carbon dioxide on coal. Energy values attributed to the irreversible storage capacity for CO2 on coals were determined. The lowest irreversible sorption energy was found for North Dakota coal (0.44 J/g), and the highest value was for the Illinois No. 6 coal (8.93 J/g). The effect of high-pressure CO2 on the macromolecular structure of coal was also studied by means of differential scanning calorimetry. It was found that the temperature of the second-order phase transition of Wyodak coal decreases with an increase in CO2 pressure significantly, indicating that high-pressure CO2 diffuses through the coal matrix, causes significant plasticization effects, and changes the macromolecular structure of the Wyodak coal. Desorption characteristics of CO2 from the Pittsburgh No. 8 coal were studied by temperature-programmed desorption mass spectrometry. It was found that CO2 desorption from the coal is an activated process and follows a first-order kinetic model. The activation energy for CO2 desorption from the Pittsburgh No. 8 coal increased with the preadsorbed CO2 pressure, indicating that CO2 binds more strongly and demands more energy to desorb from the Pittsburgh No. 8 coal at higher pressures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Off-design performance is of key importance now in the design of automotive turbocharger turbines. Due to automotive drive cycles, a turbine that can extract more energy at high pressure ratios and lower rotational speeds is desirable. Typically a radial turbine provides peak efficiency at U/C values of 0.7, but at high pressure ratios and low rotational speeds, the U/C value will be low and the rotor will experience high values of positive incidence at the inlet. The positive incidence causes high blade loading resulting in additional tip leakage flow in the rotor as well as flow separation on the suction surface of the blade. An experimental assessment has been performed on a scaled automotive VGS (variable geometry system). Three different stator vane positions have been analyzed: minimum, 25%, and maximum flow position. The first tests were to establish whether positioning the endwall clearance on the hub or shroud side of the stator vanes produced a different impact on turbine efficiency. Following this, a back swept rotor was tested to establish the potential gains to be achieved during off-design operation. A single passage CFD model of the test rig was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine. It was seen that off-design performance was improved by implementing clearance on the hub side of the stator vanes rather than on the shroud side. Through CFD analysis and tests, it was seen that two leakage vortices form, one at the leading edge and one after the spindle of the stator vane. The vortices affect the flow angle at the inlet to the rotor, in the hub region. The flow angle is shifted to more negative values of incidence, which is beneficial at the off-design conditions but detrimental at the design point. The back swept rotor was tested with the hub side stator vane clearance configuration. The efficiency and MFR were increased at the minimum and 25% stator vane position. At the design point, the efficiency and MFR were decreased. The CFD investigation showed that the incidence angle was improved at the off-design conditions for the back swept rotor. This reduction in the positive incidence angle, along with the improvement caused by the stator vane tip leakage flow, reduced flow separation on the suction surface of the rotor. At the design point, both the tip leakage flow of the stator vanes and the back swept blade angle caused flow separation on the pressure surface of the rotor. This resulted in additional blockage at the throat of the rotor reducing MFR and efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques (micro-XANES, micro-X-ray fluorescence (micro-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ionic liquid, tributylmethylammonium methylcarbonate, has been employed as a catalytic base for clean N-methylation of indole with dimethylcarbonate. The reaction conditions were optimised under microwave heating to give 100% conversion and 100% selectivity to N-methylindole, and subsequently transferred to a high temperature/high pressure (285 degrees C/150 bar) continuous flow process using a short (3 min) residence time and 2 mol% of the catalyst to efficiently methylate a variety of different amines, phenols, thiophenols and carboxylic acid substrates. The extremely short residence times, versatility, and high selectivity have significant implications for the synthesis of a wide range of pharmaceutical intermediates, as high product throughputs can be obtained via this scalable continuous flow protocol. It has also been shown that the ionic liquid can be generated in situ from tributylamine, which has the net effect of transforming an ineffective stoichiometric base into a highly efficient catalyst for this broad class of reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.