800 resultados para heuristic algorithm
Resumo:
An uncomplicated and easy handling prescription that converts the task of checking the unitarity of massive, topologically massive, models into a straightforward algebraic exercise, is developed. The algorithm is used to test the unitarity of both topologically massive higher-derivative electromagnetism (TMHDE) and topologically massive higher-derivative gravity (TMHDG). The novel and amazing features of these effective field models are also discussed.
Resumo:
Este trabalho apresenta a modelagem de um problema particular de Programação da Produção numa Fundição Automatizada e sua resolução por um algoritmo de busca heurística, que explora a estrutura do problema.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O problema de minimização de troca de ferramentas (MTSP) busca uma sequência de processamento de um conjunto de tarefas, de modo a minimizar o número de trocas de ferramentas requeridas. Este trabalho apresenta uma nova heurística para o MTSP, capaz de produzir bons limitantes superiores para um algoritmo enumerativo. Esta heurística possui duas fases: uma fase construtiva que é baseada em um grafo em que os vértices correspondem a ferramentas e existe um arco k = (i, j) que liga os vértices i e j se e somente se as ferramentas i e j são necessárias para a execução de alguma tarefa k; e uma fase de refinamento baseada na meta-heurística Busca Local Iterativa. Resultados computacionais mostram que a heurística proposta tem um bom desempenho para os problemas testados, contribuindo para uma redução significativa no número de nós gerados de um algoritmo enumerativo.
Resumo:
This paper introduces an improved tabu-based vector optimal algorithm for multiobjective optimal designs of electromagnetic devices. The improvements include a division of the entire search process, a new method for fitness assignment, a novel scheme for the generation and selection of neighborhood solutions, and so forth. Numerical results on a mathematical function and an engineering multiobjective design problem demonstrate that the proposed method can produce virtually the exact Pareto front, in both parameter and objective spaces, even though the iteration number used by it is only about 70% of that required by its ancestor.
Resumo:
Two applications of the modified Chebyshev algorithm are considered. The first application deals with the generation of orthogonal polynomials associated with a weight function having singularities on or near the end points of the interval of orthogonality. The other application involves the generation of real Szego polynomials.
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
The transmission network planning problem is a non-linear integer mixed programming problem (NLIMP). Most of the algorithms used to solve this problem use a linear programming subroutine (LP) to solve LP problems resulting from planning algorithms. Sometimes the resolution of these LPs represents a major computational effort. The particularity of these LPs in the optimal solution is that only some inequality constraints are binding. This task transforms the LP into an equivalent problem with only one equality constraint (the power flow equation) and many inequality constraints, and uses a dual simplex algorithm and a relaxation strategy to solve the LPs. The optimisation process is started with only one equality constraint and, in each step, the most unfeasible constraint is added. The logic used is similar to a proposal for electric systems operation planning. The results show a higher performance of the algorithm when compared to primal simplex methods.
Resumo:
The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach.
Resumo:
An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate buses has been defined, the program gives the location and size of the reactive sources needed(if any) in keeping with operating and security constraints.
Resumo:
A low-cost computer procedure to determine the orbit of an artificial satellite by using short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as measurements to estimate the orbit via recursive least squares method. The algorithm applies orthogonal Givens rotations for solving recursive and sequential orbit determination problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for data batches of one orbital period (approximately two hours), and force modelling, due to the full JGM-2 gravity field model, was considered. When compared with the reference Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision better than 9 m is easily obtained, even when short batches of data are used. Copyright (c) 2007.
Resumo:
An earlier model underlying the foraging strategy of a pachycodyla apicalis ant is modified. The proposed algorithm incorporates key features of the tabu-search method in the development of a relatively simple but robust global ant colony optimization algorithm. Numerical results are reported to validate and demonstrate the feasibility and effectiveness of the proposed algorithm in solving electromagnetic (EM) design problems.