931 resultados para height of instrument
Resumo:
Forecasting the effects of stressors on the dynamics of natural populations requires assessment of the joint effects of a stressor and population density on the population response. The effects can be depicted as a contour map in which the population response, here assessed by Population growth rate, varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. We present the first complete map of this type using as our model Folsomia candida exposed to five different concentrations of the widespread anthelmintic veterinary medicine ivermectin in replicated microcosm experiments lasting 49 days. The concentrations of ivermectin in yeast were 0.0, 6.8 28.83 66.4 and 210.0 mg/L wet weight. Increasing density and chemical concentration both significantly reduced the population growth rate of Folsomia candida, in part through effects on food consumption and fecundity. The interaction between density and ivermectin concentration was "less-than-additive," implying that at high density populations were able to compensate for the effects of the chemical. This result demonstrates that regulatory protocols carried out at low density (as in most past experiments) may seriously overestimate effects in the field, where densities are locally high and populations are resource limited (e.g., in feces of livestock treated with ivermectin).
Resumo:
This study uses an analytical model, based on the cooling-to-space approximation, and a fixed dynamical heating model to investigate the structure of the stratospheric cooling that occurs in response to a uniform increase in stratospheric water vapour (SWV). At all latitudes, the largest cooling occurs in the lower stratosphere and decreases in magnitude with height. The cooling is strongly enhanced in the Extratropics compared to the Tropics. This is markedly different to the case of an increase in CO2, which causes maximum cooling near the stratopause and a small warming in the tropical lower stratosphere. The qualitative differences in the structure of the cooling can be explained by the smaller opacity of water vapour bands in the stratosphere compared to CO2. The small opacity means that the magnitude of the initial heating rate perturbation only decreases by a factor of four between the upper and lower stratosphere for a SWV perturbation. Therefore, to balance the heating rate perturbation, the largest temperature change is required in the lower stratosphere. Increasing the background concentration of SWV causes the water vapour bands to become more opaque. For a SWV perturbation applied to a background SWV concentration ≥30 ppmv, the heating rate perturbation and temperature change structurally resemble those from an increase in CO2. In the Extratropics, the lower height of the tropopause is found to cause the enhancement in the cooling at those latitudes. By controlling the depth of atmosphere which adjusts to the SWV perturbation, the tropopause height affects the net exchange of radiation between the layers in the stratosphere as they cool. The latitudinal gradient in upwelling infrared radiation at the tropopause and variations in the background temperature are found to have only a minor effect on the structure of the stratospheric temperature response to a change in SWV.
Resumo:
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.
Resumo:
In this study the relationship between the North American monsoon, the Californian sea surface temperature (SST) cold pool, the Rocky Mountains and the North Pacific subtropical anticyclone is investigated using the Hadley Centre's atmospheric climate model, HadAM3. In 1996 Hoskins hypothesized that heating in the North American monsoon might be important for the maintenance of the summertime North Pacific subtropical anticyclone, since the monsoon heating may induce descent to the north-west of the monsoon in the descending eastern flank of the subtropical anticyclone. This descent is further enhanced by radiative cooling and is associated with equatorward surface winds parallel to the western coast of North America. These equatorward winds induce oceanic upwelling of cold water and contribute to the formation of the Californian SST cold pool, which may feed back on the anticyclone by further suppressing convection and inducing descent. More recently, Rodwell and Hoskins also investigated the global summer monsoon–subtropical anticyclone relationship. They examined the role that mountains play in impeding the progress of the low-level mid-latitude westerlies, either deflecting the westerlies northwards where they ascend along the sloping mid-latitude isentropes or deflecting them southwards forcing them to descend along the isentropes. In particular, the introduction of the Rockies into a primitive-equation model adiabatically induces descent in the eastern descending flank of the North Pacific subtropical anticyclone. These hypothesized mechanisms have been investigated using HadAM3, focusing on the possible suppression of convection by the Californian SST cold pool, the response of the North Pacific subtropical anticyclone to the strength of the North American monsoon and the ‘blocking’ of the mid-latitude westerlies by the Rocky Mountains. The role of the Rockies is examined by integrating the model with modified orography for the Rocky Mountains. Changing the height of the Rockies alters the circulation in a way consistent with the mechanism outlined above. Higher Rocky mountains force the westerlies southwards, inducing descent in the eastern flank of the subtropical anticyclone as the air descends along the sloping isentropes. The relationship between the North American monsoon and the North Pacific subtropical anticyclone is investigated by suppressing the monsoon in HadAM3. The suppression of the monsoon is accomplished by increasing the surface albedo over Mexico, which induces anomalous ascent on the eastward flank of the subtropical anticyclone and anomalous polewards surface winds along the western coast of the North American continent, also providing support for the above hypothesis. The removal of the Californian SST cold pool, however, has a statistically insignificant effect on the model, suggesting that in this model the feedback of the SST cold pool on the eastern flank of the anticyclone is weak.
Resumo:
Using linear theory, it is shown that, in resonant flow over a 2D mountain ridge, such as exists when a layer of uniform wind is topped by an environmental critical level, the conditions for internal gravity-wave breaking are different from those determined in previous studies for non-resonant flows. For Richardson numbers in the shear layer not exceeding 2.25, two zones of flow overturning exist, respectively below and downstream and above and upstream of the expected locations. Flow overturning occurs for values of the dimensionless height of the ridge smaller than those required for a uniform wind profile. These results may have implications for the physical understanding of high-drag states.
Resumo:
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes.
Resumo:
A numerical model using boundary element techniques is discussed which enables the insertion loss for various noise barriers of complex profile and surface cover to be calculated. The model is applied to single-foundation noise barriers to which additional side-panels are added to create fork-like profiles. Spectra of insertion loss and mean insertion loss results over a range of receiver positions for a broadband source are presented. It is concluded that ‘multiple-edged’ barriers show a significant increase in acoustic-efficiency over a simple vertical screen. Adding lightweight side-panels would be a relatively inexpensive measure, and one which could be applied to barriers already in existence. This type of barrier would also allow the height of the construction to be kept to a minimum.
Resumo:
Middle-atmosphere models commonly employ a sponge layer in the upper portion of their domain. It is shown that the relaxational nature of the sponge allows it to couple to the dynamics at lower levels in an artificial manner. In particular, the long-term zonally symmetric response to an imposed extratropical local force or diabatic heating is shown to induce a drag force in the sponge that modifies the response expected from the “downward control” arguments of Haynes et al. [1991]. In the case of an imposed local force the sponge acts to divert a fraction of the mean meridional mass flux upward, which for realistic parameter values is approximately equal to exp(−Δz/H), where Δz is the distance between the forcing region and the sponge layer and H is the density scale height. This sponge-induced upper cell causes temperature changes that, just below the sponge layer, are of comparable magnitude to those just below the forcing region. In the case of an imposed local diabatic heating, the sponge induces a meridional circulation extending through the entire depth of the atmosphere. This circulation causes temperature changes that, just below the sponge layer, are of opposite sign and comparable in magnitude to those at the heating region. In both cases, the sponge-induced temperature changes are essentially independent of the height of the imposed force or diabatic heating, provided the latter is located outside the sponge, but decrease exponentially as one moves down from the sponge. Thus the effect of the sponge can be made arbitrarily small at a given altitude by placing the sponge sufficiently high; e.g., its effect on temperatures two scale heights below is roughly at the 10% level, provided the imposed force or diabatic heating is located outside the sponge. When, however, an imposed force is applied within the sponge layer (a highly plausible situation for parameterized mesospheric gravity-wave drag), its effect is almost entirely nullified by the sponge-layer feedback and its expected impact on temperatures below largely fails to materialize. Simulations using a middle-atmosphere general circulation model are described, which demonstrate that this sponge-layer feedback can be a significant effect in parameter regimes of physical interest. Zonally symmetric (two dimensional) middle-atmosphere models commonly employ a Rayleigh drag throughout the model domain. It is shown that the long-term zonally symmetric response to an imposed extratropical local force or diabatic heating, in this case, is noticeably modified from that expected from downward control, even for a very weak drag coefficient
Resumo:
Sea surface temperature (SST) measurements are required by operational ocean and atmospheric forecasting systems to constrain modeled upper ocean circulation and thermal structure. The Global Ocean Data Assimilation Experiment (GODAE) High Resolution SST Pilot Project (GHRSST-PP) was initiated to address these needs by coordinating the provision of accurate, high-resolution, SST products for the global domain. The pilot project is now complete, but activities continue within the Group for High Resolution SST (GHRSST). The pilot project focused on harmonizing diverse satellite and in situ data streams that were indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework implemented in an internationally distributed manner. Data with meaningful error estimates developed within GHRSST are provided by services within R/GTS. Currently, several terabytes of data are processed at international centers daily, creating more than 25 gigabytes of product. Ensemble SST analyses together with anomaly SST outputs are generated each day, providing confidence in SST analyses via diagnostic outputs. Diagnostic data sets are generated and Web interfaces are provided to monitor the quality of observation and analysis products. GHRSST research and development projects continue to tackle problems of instrument calibration, algorithm development, diurnal variability, skin temperature deviation, and validation/verification of GHRSST products. GHRSST also works closely with applications and users, providing a forum for discussion and feedback between SST users and producers on a regular basis. All data within the GHRSST R/GTS framework are freely available. This paper reviews the progress of GHRSST-PP, highlighting achievements that have been fundamental to the success of the pilot project.
Resumo:
This paper for the first time discuss the wind pressure distribution on the building surface immersed in wind profile of low-level jet rather than a logarithmic boundary-layer profile. Two types of building models are considered, low-rise and high-rise building, relative to the low-level jet height. CFD simulation is carried out. The simulation results show that the wind pressure distribution immersed in a low-jet wine profile is very different from the typical uniform and boundary-layer flow. For the low-rise building, the stagnation point is located at the upper level of windward façade for the low-level jet wind case, and the separation zone above the roof top is not as obvious as the uniform case. For the high-rise building model, the height of stagnation point is almost as high as the low-level jet height.
Resumo:
The measured power losses and Doppler shifts of h.f. radio waves propagated over a long, west-east, sub-auroral path are found to exhibit features which cannot be explained by simple predictions and models. Both theory and the limited available data indicate that a bottomside F2-layer depletion should be present below the topside mid-latitude trough. Introducing this into the models (using the mean statistical positions of the trough deduced from Alouette I and II soundings) is shown to explain many of these features. From the Doppler shifts and a simple ray-tracing model the height of the depleted F2-peak inside the trough is deduced to be greater than its value outside the trough by an amount of the order of only 30–80 km.
Resumo:
The topography of many floodplains in the developed world has now been surveyed with high resolution sensors such as airborne LiDAR (Light Detection and Ranging), giving accurate Digital Elevation Models (DEMs) that facilitate accurate flood inundation modelling. This is not always the case for remote rivers in developing countries. However, the accuracy of DEMs produced for modelling studies on such rivers should be enhanced in the near future by the high resolution TanDEM-X WorldDEM. In a parallel development, increasing use is now being made of flood extents derived from high resolution Synthetic Aperture Radar (SAR) images for calibrating, validating and assimilating observations into flood inundation models in order to improve these. This paper discusses an additional use of SAR flood extents, namely to improve the accuracy of the TanDEM-X DEM in the floodplain covered by the flood extents, thereby permanently improving this DEM for future flood modelling and other studies. The method is based on the fact that for larger rivers the water elevation generally changes only slowly along a reach, so that the boundary of the flood extent (the waterline) can be regarded locally as a quasi-contour. As a result, heights of adjacent pixels along a small section of waterline can be regarded as samples with a common population mean. The height of the central pixel in the section can be replaced with the average of these heights, leading to a more accurate estimate. While this will result in a reduction in the height errors along a waterline, the waterline is a linear feature in a two-dimensional space. However, improvements to the DEM heights between adjacent pairs of waterlines can also be made, because DEM heights enclosed by the higher waterline of a pair must be at least no higher than the corrected heights along the higher waterline, whereas DEM heights not enclosed by the lower waterline must in general be no lower than the corrected heights along the lower waterline. In addition, DEM heights between the higher and lower waterlines can also be assigned smaller errors because of the reduced errors on the corrected waterline heights. The method was tested on a section of the TanDEM-X Intermediate DEM (IDEM) covering an 11km reach of the Warwickshire Avon, England. Flood extents from four COSMO-SKyMed images were available at various stages of a flood in November 2012, and a LiDAR DEM was available for validation. In the area covered by the flood extents, the original IDEM heights had a mean difference from the corresponding LiDAR heights of 0.5 m with a standard deviation of 2.0 m, while the corrected heights had a mean difference of 0.3 m with standard deviation 1.2 m. These figures show that significant reductions in IDEM height bias and error can be made using the method, with the corrected error being only 60% of the original. Even if only a single SAR image obtained near the peak of the flood was used, the corrected error was only 66% of the original. The method should also be capable of improving the final TanDEM-X DEM and other DEMs, and may also be of use with data from the SWOT (Surface Water and Ocean Topography) satellite.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
Sea surface temperature (SST) data are often provided as gridded products, typically at resolutions of order 0.05 degrees from satellite observations to reduce data volume at the request of data users and facilitate comparison against other products or models. Sampling uncertainty is introduced in gridded products where the full surface area of the ocean within a grid cell cannot be fully observed because of cloud cover. In this paper we parameterise uncertainties in SST as a function of the percentage of clear-sky pixels available and the SST variability in that subsample. This parameterisation is developed from Advanced Along Track Scanning Radiometer (AATSR) data, but is applicable to all gridded L3U SST products at resolutions of 0.05-0.1 degrees, irrespective of instrument and retrieval algorithm, provided that instrument noise propagated into the SST is accounted for. We also calculate the sampling uncertainty of ~0.04 K in Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) products, using related methods.
Resumo:
Iniciamos o presente trabalho fazendo um estudo comparativo entre duas células de carga de compressão, ambas em formato cilíndrico, possuindo internamente, à meia altura do corpo, uma placa engastada. Estas duas células de carga são de aço SAE 1045; para uma delas adaptamos um modelo matemático teórico, através do qual foram pré-determinadas as suas dimensões, objetivando em comportamento ótimo no que se refere às distribuições de tensões e deformações, esta denominamos de Célula de Carga I. Na outra, denominada de Célula de Carga II, alteramos algumas dimensões, com a finalidade de comparar seu comportamento em relação à primeira. Também, no transcorrer do trabalho analisamos e comparamos os resultados matemáticos com os valores práticos encontrados. Frente aos resultados obtidos neste estudo prévio, projetamos, construímos e analisamos cinco outras células de carga (Células de Carga III, IV, V, VI e VII), em termos de geometria, material e tratamento térmico, visando o aperfeiçoamento de tais transdutores de força no que concerne a usinagem, resposta de sinal elétrico, limitações e aplicações industriais.