781 resultados para heart beat
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heart failure is a frequent complication of myocardial infarction. Several factors, such as recurrent myocardial ischemia, infarct size, ventricular remodeling, stunned myocardium, mechanical complications, and hibernating myocardium influence the appearance of left ventricular systolic dysfunction after myocardial infarction. Importantly, its presence increases the risk of death by at least 3- to 4-fold. The knowledge of the mechanisms and clinical features are essential for the diagnosis and treatment of left ventricular dysfunction and heart failure after myocardial infarction. Therefore, this review will focus on the clinical implications and treatment of heart failure after myocardial infarction.
Resumo:
Several indexes of myocardial contractility have been proposed to assess ventricular function in the isovolumetrically beating isolated heart. However, the conclusions reached on the basis of these indexes may be influenced by ventricular geometry rather than contractility itself. The objective of the present study was to assess the performance of widely used contractility indexes in the isovolumetrically beating isolated heart in two experimental models of hypertrophy, the spontaneously hypertensive rat (SHR) and infrarenal aortocava fistula. Compared to normotensive controls (N = 8), SHRs with concentric hypertrophy (N = 10) presented increased maximum rate of ventricular pressure rise (3875 ± 526 vs 2555 ± 359 mmHg/s, P < 0.05) and peak of isovolumetric pressure (187 ± 11 vs 152 ± 11 mmHg, P < 0.05), and decreased developed stress (123 ± 20 vs 152 ± 26 g/cm², P < 0.05) and slope of stress-strain relationship (4.9 ± 0.42 vs 6.6 ± 0.77 g/cm²/%). Compared with controls (N = 11), rats with volume overload-induced eccentric hypertrophy (N = 16) presented increased developed stress (157 ± 38 vs 124 ± 22 g/cm², P < 0.05) and slope of stress-strain relationship (9 ± 2 vs 7 ± 1 g/cm²/%, P < 0.05), and decreased maximum rate of ventricular pressure rise(2746 ± 382 vs 3319 ± 352 mmHg, P < 0.05) and peak of isovolumetric pressure (115 ± 14 vs 165 ± 13 mmHg/s, P < 0.05). The results suggested that indexes of myocardial contractility used in experimental studies may present opposite results in the same heart and may be influenced by ventricular geometry. We concluded that several indexes should be taken into account for proper evaluation of contractile state, in the isovolumetrically beating isolated heart.
Resumo:
Aim. The aim of this study was to understand the heart transplantation experience based on patients' descriptions.Background. To patients with heart failure, heart transplantation represents a possibility to survive and improve their quality of life. Studies have shown that more quality of life is related to patients' increasing awareness and participation in the work of the healthcare team in the post-transplantation period. Deficient relationships between patients and healthcare providers result in lower compliance with the postoperative regimen.Method. A phenomenological approach was used to interview 26 patients who were heart transplant recipients. Patients were interviewed individually and asked this single question: What does the experience of being heart transplanted mean? Participants' descriptions were analysed using phenomenological reduction, analysis and interpretation.Results. Three categories emerged from data analysis: (i) the time lived by the heart recipient; (ii) donors, family and caregivers and (iii) reflections on the experience lived. Living after heart transplant means living in a complex situation: recipients are confronted with lifelong immunosuppressive therapy associated with many side-effects. Some felt healthy whereas others reported persistence of complications as well as the onset of other pathologies. However, all participants celebrated an improvement in quality of life. Health caregivers, their social and family support had been essential for their struggle. Participants realised that life after heart transplantation was a continuing process demanding support and structured follow-up for the rest of their lives.Conclusion. The findings suggest that each individual has unique experiences of the heart transplantation process. To go on living participants had to accept changes and adapt: to the organ change, to complications resulting from rejection of the organ, to lots of pills and food restrictions.Relevance to clinical practice. Stimulating a heart transplant patients spontaneous expression about what they are experiencing and granting them the actual status of the main character in their own story is important to their care.
Resumo:
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 +/- 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg-1) followed by induction of anesthesia with IV propofol (5 mg kg-1). Anesthesia was maintained with IV propofol (0.2 mg kg-1 minute-1) and remifentanil, infused as follows: R1, 0.125 mu g kg-1 minute-1; R2, 0.25 mu g kg-1 minute-1; and R3, 0.5 mu g kg-1 minute-1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (f(R)), end tidal CO(2) (Pe'CO(2)), arterial hemoglobin O(2) saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72-98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25-0.5 mu g kg-1 minute-1 remifentanil combined with 0.2 mg kg-1 minute-1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.