968 resultados para growth hormone deficiency
Resumo:
A wide range of cell culture, animal and human epidemiological studies are suggestive of a role of vitamin E (VE) in brain function and in the prevention of neurodegeneration. However, the underlying molecular mechanisms remain largely unknown. In the current investigation Affymetrix gene chip technology was utilised to establish the impact of chronic VE deficiency on hippocampal genes expression. Male albino rats were fed either a VE deficient or standard diet (60 mg/kg feed) for a period of 9 months. Rats were sacrificed, the hippocampus removed and genes expression established in individual animals. VE deficiency showed to have a strong impact on genes expression in the hippocampus. An important number of genes found to be regulated by VE was associated with hormones and hormone metabolism, nerve growth factor, apoptosis, dopaminergic neurotransmission, and clearance of amyloid-beta and advanced glycated endproducts. In particular, VE strongly affected the expression of an array of genes encoding for proteins directly or indirectly involved in the clearance of amyloid beta, changes which are consistent with a protective effect of VE on Alzheimer's disease progression.
Resumo:
Background: MCF-7, T-47-D, ZR-75-1 human breast cancer cell lines are dependent on oestrogen for growth but can adapt to grow during long-term oestrogen deprivation. This serves as a model for identification of therapeutic targets in endocrine-resistant breast cancer. Methods: An overlooked complication of this model is that it involves more than non-addition of oestrogen, and inadequate attention has been given to separating molecular events associated with each of the culture manipulations. Results: Insulin and oestradiol were shown to protect MCF-7 cells against upregulation of basal growth, demonstrating a crosstalk in the growth adaptation process. Increased phosphorylation of p44/42MAPK and c-Raf reflected removal of insulin from the medium and proliferation of all three cell lines was inhibited to a lesser extent by PD98059 and U0126 following long-term oestrogen/insulin withdrawal, demonstrating a reduced dependence on the MAPK pathway. By contrast, long-term oestrogen/insulin deprivation did not alter levels of phosphorylated Akt and did not alter the dose-response of growth inhibition with LY294002 in any of the three cell lines. The IGF1R inhibitor picropodophyllin inhibited growth of all MCF-7 cells but only in the long-term oestrogen/insulin-deprived cells was this paralleled by reduction in phosphorylated p70S6K, a downstream target of mTOR. Long-term oestrogen/insulin-deprived MCF-7 cells had higher levels of phosphorylated p70S6K and developed increased sensitivity to growth inhibition by rapamycin. Conclusions: The greater sensitivity to growth inhibition by rapamycin in all three cell lines following long-term oestrogen/insulin deprivation suggests rapamycin-based therapies might be more effective in breast cancers with acquired oestrogen resistance. Keywords Akt, breast cancer cells, endocrine resistance, insulin, MAPK, MCF-7 cells, mTOR, oestrogen, oestrogen-deprived, PI3K, picropodophyllin, rapamycin, T-47-D cells, ZR-75-1 cells
Resumo:
Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.
Resumo:
Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.
Resumo:
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.
Resumo:
Rationale: Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective: We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results: Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem)immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions: These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in hemostasis and thrombosis by stabilizing the LAT signalosome.
Resumo:
In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.
Resumo:
Objective: To study the growth of children with complete unilateral cleft lip and palate (UCLP) from birth to 2 years of age and to construct specific UCLP growth curves. Design: Physical growth was a secondary outcome measure of a National Institutes of Health-sponsored longitudinal, prospective clinical trial involving the University of Florida (United States) and the University of Sao Paulo (Brazil). Patients: Six hundred twenty-seven children with UCLP, nonsyndromic, both genders. Methods: Length, weight, and head circumference were prospectively measured for a group of children enrolled in a clinical trial. Median growth curves for the three parameters (length, weight, head circumference) were performed and compared with the median for the National Center for Health Statistics (NCHS) curves. The median values for length, weight, and head circumference at birth and 6, 12, 18, and 24 months of age were plotted against NCHS median values and statistically compared at birth and 24 months. Setting: Hospital de Reabilitacao de Anomalias Craniofaciais, Universidade de Sao Paulo, Bauru, Brazil (HRAC-USP). Results: At birth, children of both genders with UCLP presented with smaller body dimensions in relation to NCHS median values, but the results suggest a catch-up growth for length, weight, and head circumference for girls and for weight (to some degree) and head circumference for boys. Conclusions: Weight was the most compromised parameter for both genders, followed by length and then head circumference. There was no evidence of short stature. This study established growth curves for children with UCLP.
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
In vivo and in vitro assays were performed with S91 murine melanoma cells aiming to investigate the effects of testosterone and photoperiod on tumor growth and melanogenesis (tyrosinase activity). In vivo assays were performed by inducing melanoma tumors in castrated mice receiving increasing concentrations of testosterone and submitted to varying photoperiod regimens. The results demonstrated that the increase of melanin content was higher in animals submitted to the longest days, thus demonstrating the importance of photoperiod length in melanin synthesis. Increase in tumor growth and protein content was observed in testosterone-treated animals submitted to 12L:12D; in testosterone-treated animals submitted to 4L:20D and 20L:4D tumor growth was significantly smaller. In S91 cultured cells, testosterone increased cell proliferation and reduced tyrosinase activity in a dose-dependent manner. Radioactive binding assays demonstrated that the hormone was acting through low affinity testosterone receptors, since the presence of aromatase inhibitor did not affect the binding assay in a statistically significant way, and all the in vitro experiments were performed in the presence of the inhibitor. Our in vivo data added to the in vitro results corroborate the hypothesis that S91 melanoma cells directly respond to testosterone and that this effect is modulated by light.
Resumo:
Over recent years nitric oxide (NO) not only has appeared as an important endogenous signaling molecule in plants and as a mediator in many developmental and physiological processes, but has also received recognition as a plant hormone. The impressive recent achievements in elucidating the role of NO in plants have come about by the application of NO donors. The aim herein was to study the effects of the different NO donors, sodium nitroprusside (SNP) and the nitrosyl ethylenediaminetetraacetate ruthenium(II) ([Ru(NO)(Hedta)]) complex on cellular growth in embryogenic suspension cultures of Araucaria angustifolia. Appraisal of our data revealed that [Ru(NO)(Hedta)] stimulated about 60% of cellular growth in embryogenic suspension cultures of A. angustifolia, with results similar to those observed with the SNP donor. Nevertheless, application of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) inhibited this cellular growth in both. Cellular growth was correlated with an increase in endogenous NO levels after 21 days of culture, especially in treatments with NO donors. Our results demonstrated that the [Ru(NO)Hedta] complex could possibly be used as a NO donor in plants. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Transforming growth factor beta (TGF-beta) plays a role both in the induction of Treg and in the differentiation of the IL-17-secreting T cells (Th17) which drive inflammation in experimental autoimmune encephalomyelitis (EAE). We investigated the role that thrombospondin-1 (TSP-1) dependent activation of TGF-beta played in the generation of an encephalitic Th17 response in EAE. Upon immunization with myelin oligodendrocyte glycoprotein peptide (MOG(35-55)), TSP-1 deficient (TSP-1(null)) mice and MOG(35-55) TCR transgenic mice that lack of TSP-1 (2D2.TSP-1(null)) exhibited an attenuated form of EAE, and secreted lower levels of IL-17. Adoptive transfer of in vitro-activated 2D2.TSP-1(null) T cells induced a milder form of EAE, independent of TSP-1 expression in the recipient mice. Furthermore, in vitro studies demonstrated that anti-CD3/anti-CD28 pre-activated CD4+ T cells transiently upregulated latent TGF-beta in a TSP-1 dependent way, and such activation of latent TGF-beta was required for the differentiation of Th17 cells. These results demonstrate that TSP-1 participates in the differentiation of Th17 cells through its ability to activate latent TGF-beta, and enhances the inflammatory response in EAE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To Study this, pregnant once were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved Lip to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocyres, in addition to a slight delay in endochondral and intramembranous ossification. This Suggests that LIP to E 16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly (similar to 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast. D2 mRNA expression increased significantly by E18.5 and markedly (similar to 2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time Suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
The growth of maize (Zea mays L.) kernels depends on the availability of carbon (C) and nitrogen (N) assimilates supplied by the mother plant and the capacity of the kernel to use them. Our objectives were to study the effects of N and sucrose supply levels on growth and metabolism of maize kernels. Kernel explants of Pioneer 34RO6 were cultured in vitro with varying combinations of N (5 to 30 mM) and sucrose (117 to 467 mM). Maximum kernel growth was obtained with 10 mM N and 292 mM sucrose in the medium, and a deficiency of one assimilate could not be overcome by a sufficiency of the other. Increasing the N supply led to increases in the kernel sink capacity (number of cells and starch granules in the endosperm), activity of certain enzymes (soluble and bound invertases, sucrose synthase, and aspartate aminotransaminase), starch, and the levels of N compounds (total-N, soluble protein, and free amino acids), and decreased the levels of C metabolites (sucrose and reducing sugars). Conversely, increasing the sucrose supply increased the level of endosperm C metabolites, free amino acids, and ADPG-PPase and alanine transaminase activities, but decreased the activity of soluble invertase and concentrations of soluble protein and total-N. Thus, while C and N are interdependent and essential for accumulation of maximum kernel weight, they appear to regulate growth by different means. Nitrogen supply aids the establishment of kernel sink capacity, and promotes activity of enzymes relating to sucrose and nitrogen uptake, while sucrose regulates the activities df invertase and ADPG-PPase. (C) 1999 Annals of Botany Company.