999 resultados para grounding line
Resumo:
Photon yields for the 1s(2)-1s2p (He-alpha) transition of He- like ions have been measured for laser irradiated, thin foils of Ti, V and Fe. The laser pulses were of 0.527 mum wavelength and of either 80 or 300 ps duration. The data shows significant shot-to-shot variation but the Ti data is broadly consistent with previous results. In this work, we extend the previous results to include, new elements, longer pulse lengths and yields measured for emission from both surfaces of the foils. We compare our data to simulations using a hydrodynamic code and a collisional radiative model.
Resumo:
We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.
Resumo:
Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2)~10^4 cm-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 Msolar and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2, and they indicate that heavy element abundances may be reduced by a factor of 5 relative to the solar neighborhood (similar to dwarf irregular galaxies and damped Lya systems), very low extinction (A_V <4 mag) due to a very low dust-to-gas mass ratio, an enhanced cosmic-ray ionization rate, and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of primordial (or low-metallicity) halo gas since the Milky Way formed. Finally, we note that shocks from the old supernova remnant GSH 138-01-94 may have determined the morphology and dynamics of EC2.