842 resultados para good lives model
Resumo:
Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times.
In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
La Banque mondiale propose la bonne gouvernance comme la stratégie visant à corriger les maux de la mauvaise gouvernance et de faciliter le développement dans les pays en développement (Carayannis, Pirzadeh, Popescu & 2012; & Hilyard Wilks 1998; Leftwich 1993; Banque mondiale, 1989). Dans cette perspective, la réforme institutionnelle et une arène de la politique publique plus inclusive sont deux stratégies critiques qui visent à établir la bonne gouvernance, selon la Banque et d’autres institutions de Bretton Woods. Le problème, c’est que beaucoup de ces pays en voie de développement ne possèdent pas l’architecture institutionnelle préalable à ces nouvelles mesures. Cette thèse étudie et explique comment un état en voie de développement, le Commonwealth de la Dominique, s’est lancé dans un projet de loi visant l’intégrité dans la fonction publique. Cette loi, la Loi sur l’intégrité dans la fonction publique (IPO) a été adoptée en 2003 et mis en œuvre en 2008. Cette thèse analyse les relations de pouvoir entre les acteurs dominants autour de évolution de la loi et donc, elle emploie une combinaison de technique de l’analyse des réseaux sociaux et de la recherche qualitative pour répondre à la question principale: Pourquoi l’État a-t-il développé et mis en œuvre la conception actuelle de la IPO (2003)? Cette question est d’autant plus significative quand nous considérons que contrairement à la recherche existante sur le sujet, l’IPO dominiquaise diverge considérablement dans la structure du l’IPO type idéal. Nous affirmons que les acteurs "rationnels," conscients de leur position structurelle dans un réseau d’acteurs, ont utilisé leurs ressources de pouvoir pour façonner l’institution afin qu’elle serve leurs intérêts et ceux et leurs alliés. De plus, nous émettons l’hypothèse que: d’abord, le choix d’une agence spécialisée contre la corruption et la conception ultérieure de cette institution reflètent les préférences des acteurs dominants qui ont participé à la création de ladite institution et la seconde, notre hypothèse rivale, les caractéristiques des modèles alternatifs d’institutions de l’intégrité publique sont celles des acteurs non dominants. Nos résultats sont mitigés. Le jeu de pouvoir a été limité à un petit groupe d’acteurs dominants qui ont cherché à utiliser la création de la loi pour assurer leur légitimité et la survie politique. Sans surprise, aucun acteur n’a avancé un modèle alternatif. Nous avons conclu donc que la loi est la conséquence d’un jeu de pouvoir partisan. Cette recherche répond à la pénurie de recherche sur la conception des institutions de l’intégrité publique, qui semblent privilégier en grande partie un biais organisationnel et structurel. De plus, en étudiant le sujet du point de vue des relations de pouvoir (le pouvoir, lui-même, vu sous l’angle actanciel et structurel), la thèse apporte de la rigueur conceptuelle, méthodologique, et analytique au discours sur la création de ces institutions par l’étude de leur genèse des perspectives tant actancielles que structurelles. En outre, les résultats renforcent notre capacité de prédire quand et avec quelle intensité un acteur déploierait ses ressources de pouvoir.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
The present numerical investigation offers evidence concerning the validity and objectivity of the predictions of a simple, yet practical, finite element model concerning the responses of steel fibre reinforced concrete structural elements under static monotonic and cyclic loading. Emphasis is focused on realistically describing the fully brittle tensile behaviour of plain concrete and the contribution of steel fibres on the post-cracking behaviour it exhibits. The good correlation exhibited between the numerical predictions and their experimental counterparts reveals that, despite its simplicity, the subject model is capable of providing realistic predictions concerning the response of steel fibre reinforced concrete structural configurations exhibiting both ductile and brittle modes of failure without requiring recalibration.
Resumo:
Fire is a form of uncontrolled combustion which generates heat, smoke, toxic and irritant gases. All of these products are harmful to man and account for the heavy annual cost of 800 lives and £1,000,000,000 worth of property damage in Britain alone. The new discipline of Fire Safety Engineering has developed as a means of reducing these unacceptable losses. One of the main tools of Fire Safety Engineering is the mathematical model and over the past 15 years a number of mathematical models have emerged to cater for the needs of this discipline. Part of the difficulty faced by the Fire Safety Engineer is the selection of the most appropriate modelling tool to use for the job. To make an informed choice it is essential to have a good understanding of the various modelling approaches, their capabilities and limitations. In this paper some of the fundamental modelling tools used to predict fire and evacuation are investigated as are the issues associated with their use and recent developments in modelling technology.
Resumo:
The FIREDASS (FIRE Detection And Suppression Simulation) project is concerned with the development of fine water mist systems as a possible replacement for the halon fire suppression system currently used in aircraft cargo holds. The project is funded by the European Commission, under the BRITE EURAM programme. The FIREDASS consortium is made up of a combination of Industrial, Academic, Research and Regulatory partners. As part of this programme of work, a computational model has been developed to help engineers optimise the design of the water mist suppression system. This computational model is based on Computational Fluid Dynamics (CFD) and is composed of the following components: fire model; mist model; two-phase radiation model; suppression model and detector/activation model. The fire model - developed by the University of Greenwich - uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation conducted by SINTEF. The mist model - developed by the University of Greenwich - is a Lagrangian particle tracking procedure that is fully coupled to both the gas phase and the radiation field. The radiation model - developed by the National Technical University of Athens - is described using a six-flux radiation model. The suppression model - developed by SINTEF and the University of Greenwich - is based on an extinguishment crietrion that relies on oxygen concentration and temperature. The detector/ activation model - developed by Cerberus - allows the configuration of many different detector and mist configurations to be tested within the computational model. These sub-models have been integrated by the University of Greenwich into the FIREDASS software package. The model has been validated using data from the SINTEF/GEC test campaigns and it has been found that the computational model gives good agreement with these experimental results. The best agreement is obtained at the ceiling which is where the detectors and misting nozzles would be located in a real system. In this paper the model is briefly described and some results from the validation of the fire and mist model are presented.
Resumo:
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a 10 circle plus 120 circle plus (126) over bar representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by 74 symmetries, with suitable n, and one case is generated by a Z(2) x Z(2) symmetry. A numerical analysis of the 14 cases reveals that only two of them-dubbed A and B in the present paper allow good fits to the experimentally known fermion masses and mixings. (C) 2016 The Authors. Published by Elsevier B.V.
Resumo:
The modelling of diffusive terms in particle methods is a delicate matter and several models were proposed in the literature to take such terms into account. The diffusion velocity method (DVM), originally designed for the diffusion of passive scalars, turns diffusive terms into convective ones by expressing them as a divergence involving a so-called diffusion velocity. In this paper, DVM is extended to the diffusion of vectorial quantities in the three-dimensional Navier–Stokes equations, in their incompressible, velocity–vorticity formulation. The integration of a large eddy simulation (LES) turbulence model is investigated and a DVM general formulation is proposed. Either with or without LES, a novel expression of the diffusion velocity is derived, which makes it easier to approximate and which highlights the analogy with the original formulation for scalar transport. From this statement, DVM is then analysed in one dimension, both analytically and numerically on test cases to point out its good behaviour.
Resumo:
PigBal is a mass balance model that uses pig diet, digestibility and production data to predict the manure solids and nutrients produced by pig herds. It has been widely used for designing piggery effluent treatment systems and sustainable reuse areas at Australian piggeries. More recently, PigBal has also been used to estimate piggery volatile solids production for assessing greenhouse gas emissions for statutory reporting purposes by government, and for evaluating the energy potential from anaerobic digestion of pig effluent. This paper has compared PigBal predictions of manure total, volatile, and fixed solids, and nitrogen (N), phosphorus (P) and potassium (K), with manure production data generated in a replicated trial, which involved collecting manure from pigs housed in metabolic pens. Predictions of total, volatile, and fixed solids and K in the excreted manure were relatively good (combined diet R2 ≥ 0.79, modelling efficiency (EF) ≥ 0.70) whereas predictions of N and P, were generally less accurate (combined diet R2 0.56 and 0.66, EF 0.19 and –0.22, respectively). PigBal generally under-predicted lower N values while over-predicting higher values, and generally over-predicted manure P production for all diets. The most likely causes for this less accurate performance were ammonium-N volatilisation losses between manure excretion and sample analysis, and the inability of PigBal to account for higher rates of P uptake by pigs fed diets containing phytase. The outcomes of this research suggest that there is a need for further investigation and model development to enhance PigBal’s capabilities for more accurately assessing nutrient loads. However, PigBal’s satisfactory performance in predicting solids excretion demonstrates that it is suitable for assessing the methane component of greenhouse gas emission and the energy potential from anaerobic digestion of volatile solids in piggery effluent. The apparent overestimation of N and P excretion may result in conservative nutrient application rates to land and the over-prediction of the nitrous oxide component of greenhouse gas emissions.
Resumo:
The share of variable renewable energy in electricity generation has seen exponential growth during the recent decades, and due to the heightened pursuit of environmental targets, the trend is to continue with increased pace. The two most important resources, wind and insolation both bear the burden of intermittency, creating a need for regulation and posing a threat to grid stability. One possibility to deal with the imbalance between demand and generation is to store electricity temporarily, which was addressed in this thesis by implementing a dynamic model of adiabatic compressed air energy storage (CAES) with Apros dynamic simulation software. Based on literature review, the existing models due to their simplifications were found insufficient for studying transient situations, and despite of its importance, the investigation of part load operation has not yet been possible with satisfactory precision. As a key result of the thesis, the cycle efficiency at design point was simulated to be 58.7%, which correlated well with literature information, and was validated through analytical calculations. The performance at part load was validated against models shown in literature, showing good correlation. By introducing wind resource and electricity demand data to the model, grid operation of CAES was studied. In order to enable the dynamic operation, start-up and shutdown sequences were approximated in dynamic environment, as far as is known, the first time, and a user component for compressor variable guide vanes (VGV) was implemented. Even in the current state, the modularly designed model offers a framework for numerous studies. The validity of the model is limited by the accuracy of VGV correlations at part load, and in addition the implementation of heat losses to the thermal energy storage is necessary to enable longer simulations. More extended use of forecasts is one of the important targets of development, if the system operation is to be optimised in future.
Resumo:
PigBal is a mass balance model that uses pig diet, digestibility and production data to predict the manure solids and nutrients produced by pig herds. It has been widely used for designing piggery effluent treatment systems and sustainable reuse areas at Australian piggeries. More recently, PigBal has also been used to estimate piggery volatile solids production for assessing greenhouse gas emissions for statutory reporting purposes by government, and for evaluating the energy potential from anaerobic digestion of pig effluent. This paper has compared PigBal predictions of manure total, volatile, and fixed solids, and nitrogen (N), phosphorus (P) and potassium (K), with manure production data generated in a replicated trial, which involved collecting manure from pigs housed in metabolic pens. Predictions of total, volatile, and fixed solids and K in the excreted manure were relatively good (combined diet R2 ≥ 0.79, modelling efficiency (EF) ≥ 0.70) whereas predictions of N and P, were generally less accurate (combined diet R2 0.56 and 0.66, EF 0.19 and -0.22, respectively). PigBal generally under-predicted lower N values while over-predicting higher values, and generally over-predicted manure P production for all diets. The most likely causes for this less accurate performance were ammonium-N volatilisation losses between manure excretion and sample analysis, and the inability of PigBal to account for higher rates of P uptake by pigs fed diets containing phytase. The outcomes of this research suggest that there is a need for further investigation and model development to enhance PigBal's capabilities for more accurately assessing nutrient loads. However, PigBal's satisfactory performance in predicting solids excretion demonstrates that it is suitable for assessing the methane component of greenhouse gas emission and the energy potential from anaerobic digestion of volatile solids in piggery effluent. The apparent overestimation of N and P excretion may result in conservative nutrient application rates to land and the over-prediction of the nitrous oxide component of greenhouse gas emissions. © CSIRO 2016.
Resumo:
For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series. First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in reproducing observed flood frequencies. The presented model has the potential to be used for ungauged locations through regionalisation of the model parameters.
Resumo:
Supply chains are ubiquitous in any commercial delivery systems. The exchange of goods and services, from different supply points to distinct destinations scattered along a given geographical area, requires the management of stocks and vehicles fleets in order to minimize costs while maintaining good quality services. Even if the operating conditions remain constant over a given time horizon, managing a supply chain is a very complex task. Its complexity increases exponentially with both the number of network nodes and the dynamical operational changes. Moreover, the management system must be adaptive in order to easily cope with several disturbances such as machinery and vehicles breakdowns or changes in demand. This work proposes the use of a model predictive control paradigm in order to tackle the above referred issues. The obtained simulation results suggest that this strategy promotes an easy tasks rescheduling in case of disturbances or anticipated changes in operating conditions. © Springer International Publishing Switzerland 2017
Resumo:
Paper based on the report for the unit on “Sociology of New Information Technologies” at the MSc Industrial Management and Engineering at the Universidade Nova Lisbon, Faculty of Sciences and Technology, under supervision of Prof. António B. Moniz. The report had the support from the ERASMUS program.