884 resultados para genome-wide association study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Qualidade em Análises - Erasmus Mundus, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results: Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions: Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les maladies inflammatoires de l’intestin (MIIs, [MIM 266600]) sont caractérisées par une inflammation chronique au niveau du tube gastro-intestinal. Les deux principales formes sont la maladie de Crohn (MC) et la colite ulcéreuse (CU). Les MIIs résulteraient d’un défaut du système immunitaire et de l’épithélium intestinal. Ce dernier forme une barrière physique et biochimique qui sépare notre système immunitaire des microorganismes commensaux et pathogènes de la microflore intestinale. Un défaut dans la barrière épithéliale intestinale pourrait donc mener à une réponse immunitaire soutenue contre notre microflore intestinale. Les études d’association pangénomiques (GWAS) ont permis d’identifier 201 régions de susceptibilité aux MIIs. Parmi celles-ci, la région 1q32 associée à la MC (p<2x10-11) et à la CU (p<6x10-7) contient 4 gènes, dont C1orf106, un gène codant pour une protéine de fonction inconnue. Le re-séquençage de la région 1q32 a permis d’identifier une variante génétique rare de C1orf106 (MAF˂1%) associée aux MIIs (p=0,009), Y333F. Nous avons démontré que la substitution de la tyr333 par une phénylalanine semble avoir un effet sur la stabilité protéique de C1orf106 tel que démontré lors de l’inhibition de la synthèse protéique induite par le cycloheximide. Nous avons déterminé que C1orf106 est exprimé dans le côlon et l’intestin grêle. De plus, son expression est augmentée lors de la différenciation des cellules épithéliales Caco-2 en épithélium intestinal polarisé. Son profil d’expression correspond aux types cellulaires et tissulaires affectés dans les MIIs. De plus, C1orf106 est partiellement co-localisée avec le marqueur des jonctions serrées, ZO-1. Toutefois, son marquage reproduit parfaitement celui du marqueur des jonctions adhérentes, E-cadhérine. Les jonctions serrées et adhérentes sont localisées du côté apical de la jonction intercellulaire et sont toutes deux impliquées dans l’établissement de la barrière épithéliale. Nous avons donc testé l’impact de C1orf106 sur la perméabilité de l’épithélium intestinal. Nous avons observé une augmentation de la perméabilité épithéliale chez un épithélium intestinal formé par des cellules Caco-2 sous-exprimant C1orf106. Nos résultats suggèrent que C1orf106 pourrait être le gène causal de la région 1q32.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les maladies inflammatoires de l’intestin (MIIs, [MIM 266600]) sont caractérisées par une inflammation chronique au niveau du tube gastro-intestinal. Les deux principales formes sont la maladie de Crohn (MC) et la colite ulcéreuse (CU). Les MIIs résulteraient d’un défaut du système immunitaire et de l’épithélium intestinal. Ce dernier forme une barrière physique et biochimique qui sépare notre système immunitaire des microorganismes commensaux et pathogènes de la microflore intestinale. Un défaut dans la barrière épithéliale intestinale pourrait donc mener à une réponse immunitaire soutenue contre notre microflore intestinale. Les études d’association pangénomiques (GWAS) ont permis d’identifier 201 régions de susceptibilité aux MIIs. Parmi celles-ci, la région 1q32 associée à la MC (p<2x10-11) et à la CU (p<6x10-7) contient 4 gènes, dont C1orf106, un gène codant pour une protéine de fonction inconnue. Le re-séquençage de la région 1q32 a permis d’identifier une variante génétique rare de C1orf106 (MAF˂1%) associée aux MIIs (p=0,009), Y333F. Nous avons démontré que la substitution de la tyr333 par une phénylalanine semble avoir un effet sur la stabilité protéique de C1orf106 tel que démontré lors de l’inhibition de la synthèse protéique induite par le cycloheximide. Nous avons déterminé que C1orf106 est exprimé dans le côlon et l’intestin grêle. De plus, son expression est augmentée lors de la différenciation des cellules épithéliales Caco-2 en épithélium intestinal polarisé. Son profil d’expression correspond aux types cellulaires et tissulaires affectés dans les MIIs. De plus, C1orf106 est partiellement co-localisée avec le marqueur des jonctions serrées, ZO-1. Toutefois, son marquage reproduit parfaitement celui du marqueur des jonctions adhérentes, E-cadhérine. Les jonctions serrées et adhérentes sont localisées du côté apical de la jonction intercellulaire et sont toutes deux impliquées dans l’établissement de la barrière épithéliale. Nous avons donc testé l’impact de C1orf106 sur la perméabilité de l’épithélium intestinal. Nous avons observé une augmentation de la perméabilité épithéliale chez un épithélium intestinal formé par des cellules Caco-2 sous-exprimant C1orf106. Nos résultats suggèrent que C1orf106 pourrait être le gène causal de la région 1q32.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overweight and obesity are strongly associated with endometrial cancer. Several independent genome-wide association studies recently identified two common polymorphisms, FTO rs9939609 and MC4R rs17782313, that are linked to increased body weight and obesity. We examined the association of FTO rs9939609 and MC4R rs17782313 with endometrial cancer risk in a pooled analysis of nine case-control studies within the Epidemiology of Endometrial Cancer Consortium (E2C2). This analysis included 3601 non-Hispanic white women with histologically-confirmed endometrial carcinoma and 5275 frequency-matched controls. Unconditional logistic regression models were used to assess the relation of FTO rs9939609 and MC4R rs17782313 genotypes to the risk of endometrial cancer. Among control women, both the FTO rs9939609 A and MC4R rs17782313 C alleles were associated with a 16% increased risk of being overweight (p = 0.001 and p = 0.004, respectively). In case-control analyses, carriers of the FTO rs9939609 AA genotype were at increased risk of endometrial carcinoma compared to women with the TT genotype [odds ratio (OR) = 1.17; 95% confidence interval (CI): 1.03–1.32, p = 0.01]. However, this association was no longer apparent after adjusting for body mass index (BMI), suggesting mediation of the gene-disease effect through body weight. The MC4R rs17782313 polymorphism was not related to endometrial cancer risk (per allele OR = 0.98; 95% CI: 0.91–1.06; p = 0.68). FTO rs9939609 is a susceptibility marker for white non-Hispanic women at higher risk of endometrial cancer. Although FTO rs9939609 alone might have limited clinical or public health significance for identifying women at high risk for endometrial cancer beyond that of excess body weight, further investigation of obesity-related genetic markers might help to identify the pathways that influence endometrial carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common neurological disorder with a strong genetic basis. However, the complex nature of the disorder has meant that few genes or susceptibility loci have been identified and replicated consistently to confirm their involvement in migraine. Approaches to genetic studies of the disorder have included analysis of the rare migraine subtype, familial hemiplegic migraine with several causal genes identified for this severe subtype. However, the exact genetic contributors to the more common migraine subtypes are still to be deciphered. Genome-wide studies such as genome-wide association studies and linkage analysis as well as candidate genes studies have been employed to investigate genes involved in common migraine. Neurological, hormonal and vascular genes are all considered key factors in the pathophysiology of migraine and are a focus of many of these studies. It is clear that the influence of individual genes on the expression of this disorder will vary. Furthermore, the disorder may be dependent on gene–gene and gene–environment interactions that have not yet been considered. In addition, identifying susceptibility genes may require phenotyping methods outside of the International Classification of Headache Disorders II criteria, such as trait component analysis and latent class analysis to better define the ambit of migraine expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10(-7)) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) is a complex syndrome that occurs following exposure to a potentially life threatening traumatic event. This review summarises the literature on the genetics of PTSD including gene–environment interactions (GxE), epigenetics and genetics of treatment response. Numerous genes have been shown to be associated with PTSD using candidate gene approaches. Genome-wide association studies have been limited due to the large sample size required to reach statistical power. Studies have shown that GxE interactions are important for PTSD susceptibility. Epigenetics plays an important role in PTSD susceptibility and some of the most promising studies show stress and child abuse trigger epigenetic changes. Much of the molecular genetics of PTSD remains to be elucidated. However, it is clear that identifying genetic markers and environmental triggers has the potential to advance early PTSD diagnosis and therapeutic interventions and ultimately ease the personal and financial burden of this debilitating disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic factors contribute to risk of many common diseases affecting reproduction and fertility. In recent years, methods for genome-wide association studies(GWAS) have revolutionized gene discovery forcommontraits and diseases. Results of GWAS are documented in the Catalog of Published Genome-Wide Association Studies at the National Human Genome Research Institute and report over 70 publications for 32 traits and diseases associated with reproduction. These include endometriosis, uterine fibroids, age at menarche and age at menopause. Results that pass appropriate stringent levels of significance are generally well replicated in independent studies. Examples of genetic variation affecting twinning rate, infertility, endometriosis and age at menarche demonstrate that the spectrum of disease-related variants for reproductive traits is similar to most other common diseases.GWAS 'hits' provide novel insights into biological pathways and the translational value of these studies lies in discovery of novel gene targets for biomarkers, drug development and greater understanding of environmental factors contributing to disease risk. Results also show that genetic data can help define sub-types of disease and co-morbidity with other traits and diseases. To date, many studies on reproductive traits have used relatively small samples. Future genetic marker studies in large samples with detailed phenotypic and clinical information will yield new insights into disease risk, disease classification and co-morbidity for many diseases associated with reproduction and infertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P < 5 × 10(-8); 15 variants were identified among men of European ancestry, 7 were identified in multi-ancestry analyses and 1 was associated with early-onset prostate cancer. These 23 variants, in combination with known prostate cancer risk variants, explain 33% of the familial risk for this disease in European-ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the usefulness of combining ancestrally diverse populations to discover risk loci for disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08×10 -33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.