986 resultados para generalized assignment problem
Resumo:
Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A corresponding symmetry is obtained for linear transport near nonequilibrium stationary states, and the class of transport laws is extended to include nonlocality in both space and time. The results are formally exact and independent of any specific model for the nonequilibrium state.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
In this paper we find the quantities that are adiabatic invariants of any desired order for a general slowly time-dependent Hamiltonian. In a preceding paper, we chose a quantity that was initially an adiabatic invariant to first order, and sought the conditions to be imposed upon the Hamiltonian so that the quantum mechanical adiabatic theorem would be valid to mth order. [We found that this occurs when the first (m - 1) time derivatives of the Hamiltonian at the initial and final time instants are equal to zero.] Here we look for a quantity that is an adiabatic invariant to mth order for any Hamiltonian that changes slowly in time, and that does not fulfill any special condition (its first time derivatives are not zero initially and finally).
Resumo:
Generalized KerrSchild space-times for a perfect-fluid source are investigated. New Petrov type D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics.
Resumo:
Petrov types D and II perfect-fluid solutions are obtained starting from conformally flat perfect-fluid metrics and by using a generalized KerrSchild ansatz. Most of the Petrov type D metrics obtained have the property that the velocity of the fluid does not lie in the two-space defined by the principal null directions of the Weyl tensor. The properties of the perfect-fluid sources are studied. Finally, a detailed analysis of a new class of spherically symmetric static perfect-fluid metrics is given.
Resumo:
In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.
Resumo:
SUMMARY: A top scoring pair (TSP) classifier consists of a pair of variables whose relative ordering can be used for accurately predicting the class label of a sample. This classification rule has the advantage of being easily interpretable and more robust against technical variations in data, as those due to different microarray platforms. Here we describe a parallel implementation of this classifier which significantly reduces the training time, and a number of extensions, including a multi-class approach, which has the potential of improving the classification performance. AVAILABILITY AND IMPLEMENTATION: Full C++ source code and R package Rgtsp are freely available from http://lausanne.isb-sib.ch/~vpopovic/research/. The implementation relies on existing OpenMP libraries.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.
Resumo:
Uniform-price assignment games are introduced as those assignment markets with the core reduced to a segment. In these games, for all active agents, competitive prices are uniform although products may be non-homogeneous. A characterization in terms of the assignment matrix is given. The only assignment markets where all submarkets are uniform are the Bohm-Bawerk horse markets. We prove that for uniform-price assignment games the kernel, or set of symmetrically-pairwise bargained allocations, either coincides with the core or reduces to the nucleolus
Resumo:
Although assignment games are hardly ever convex, in this paper a characterization of their set or extreme points of the core is provided, which is also valid for the class of convex games. For each ordering in the player set, a payoff vector is defined where each player receives his marginal contribution to a certain reduced game played by his predecessors. We prove that the whole set of reduced marginal worth vectors, which for convex games coincide with the usual marginal worth vectors, is the set of extreme points of the core of the assignment game
Resumo:
There exist coalitional games with transferable utility which have the same core but different nucleoli. We show that this cannot happen in the case of assignment games. Whenever two assignment games have the same core, their nucleoli also coincide. To show this, we prove that the nucleolus of an assignment game coincides with that of its buyer-seller exact representative