998 resultados para g-irradiation
Resumo:
Référence bibliographique : Rol, 57763
Resumo:
Référence bibliographique : Rol, 57344
Resumo:
Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.
Resumo:
Purpose/Objective(s): To implement a carotid dose sparing protocol using helical Tomotherapy in T1N0 squamous cell laryngeal carcinoma.Materials/Methods: Between July and August 2010, 7 men with stage T1N0 laryngeal carcinoma were included in this study. Age ranged from 47 - 74 years. Staging included endoscopic examination, CT-scan and MRI when indicated. Planned irradiation dose was 70 Gy in 35 fractions over 7 weeks. A simple treatment planning algorithm for carotid sparing was used: maximum point dose to the carotids 35 Gy, to the spinal cord 30 Gy, and 100% PTV volume to be covered with 95% of the prescribed dose. Carotid volume of interest extended to 1 cm above and below of the PTV. Doses to the carotid arteries, to the critical organs, and to the planned target volume (PTV) with our standard laryngeal irradiation protocol was compared. Daily megavoltage scans were obtained before each fraction. When necessary, the Planned Adaptive software (TomoTherapy Inc., Madison, WI) was used to evaluatethe need for a re-planning, which has never been indicated. Dose data were extracted using the VelocityAI software (Atlanta, GA), and data normalization and dose-volume histogram (DVH) interpolation were realized using the Igor Pro software (Portland, OR).Results:A significant (p\0.05) carotid dose sparing compared to our standard protocol with an average maximum point dose of 38.3 Gy (standard deviation [SD] 4.05 Gy), average mean dose of 18.59 Gy (SD 0.83 Gy) was achieved. In all patients, 95% of the carotid volume received less than 28.4 Gy (SD 0.98 Gy). The average maximum point dose to the spinal cord was 25.8 Gy (SD 3.24 Gy). PTV was fully covered with more than 95% of the prescribed dose for all patients with an average maximum point dose of 74.1 Gy and the absolute maximum dose in a single patient of 75.2 Gy. To date, the clinical outcomes have been excellent. Three patients (42%) developed stage 1 mucositis that was conservatively managed, and all the patients presented a mild to moderate dysphonia. All adverse effects resolved spontaneously in the month following the end of treatment. Early local control rate is 100% considering a 4 - 5 months post treatment follow-up.Conclusions: Helical Tomotherapy allows a clinically significant decrease of carotid irradiation dose compared to standard irradiation protocols with an acceptable spinal cord dose tradeoff. Moreover, this technique allows the PTV to be homogenously covered with a curative irradiation dose. Daily control imaging brings added security margins especially when working with high dose gradients. Further investigations and follow-up are underway to better evaluate the late clinical outcomes especially the local control rate, late laryngeal and vascular toxicity, and expected potential impact on cerebrovascular events.
Resumo:
Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.