876 resultados para function and evolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/IrxGa1-xSb type II superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNA) that are around 22 nucleotides long non-protein-coding RNAs, play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant defense and viral offense systems. Advances in understanding the mechanism of miRNA biogenesis and evolution are useful for elucidating the complicated roles they play in viral infection networks. In this paper a brief summary of evolution of plant anti-virus defense is given and the function of miRNAs involved in plant-virus competition is highlighted. It is believed that miRNAs have several advantages over homology-dependent and siRNA-mediated gene silencing when they are applied biotechnologically to promote plant anti-virus defense. miRNA-mediated anti-virus pathway is an ancient mechanism with a promising future. However, using miRNAs as a powerful anti-virus tool will be better realized only if miRNA genomics and functions in plant viral infection are fully understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Stroke is a chronic condition that significantly impacts on morbidity and mortality (Balanda et al. 2010). Globally, the complexity of stroke is well documented and more recently, in Ireland, as part of the National Survey of Stroke Survivors (Horgan et al. 2014). There are a number of factors that are known to influence adaptation post stroke. However, there is a lack of research to explain the variability in how survivors adapt post stroke. Hardiness is a broad personality trait that leads to better outcome. This study investigated the influence of hardiness and physical function on psychosocial adaptation post stroke. Methods: A quantitative cross-sectional, correlational, exploratory study was conducted between April and November 2013. The sample consisted of stroke survivors (n=100) who were recruited from three hospital outpatient departments and completed a questionnaire package. Results: The mean age of participants was 76 years (range 70-80), over half (56%) of the participants achieved the maximum score of 20 on the Barthel Index indicating independence in activities of daily living. The median number of days since stroke onset was 91 days (range 74-128). The total mean score and standard deviation for hardiness was 1.89 (0.4) as measured by the Dispositional Resilience Scale, indicating medium hardiness (possible range 0-3). Psychosocial adaptation was measured using the Psychosocial Adjustment to Illness Scale, the total weighted mean and standard deviation was 0.54 (0.3) indicating a satisfactory level of psychosocial adaptation (possible range 0-3). A hierarchical multiple linear regression was performed which contained 6 independent variables (hardiness, living arrangement, and length of hospital stay, number of days since stroke onset, physical function and self-rated recovery). Findings demonstrated that physical function (p<0.001) and hardiness (p=0.008) were significantly related to psychosocial adaptation. Altogether, 65% of the variation in psychosocial adaptation can be explained by the combined effect of the independent variables. Physical functioning had the highest unique contribution (11%) to explain the variance in psychosocial adaptation while self-rated recovery, hardiness, and living arrangements contributed 3% each. Conclusion: This research provides important information regarding factors that influence psychosocial adaptation post stroke at 3 months. Physical function significantly contributed to psychosocial adaptation post stroke. The personality trait of hardiness provides insight into how behaviour influenced adaptation post stroke. While hardiness also had a strong relationship with psychosocial adaptation, further research is necessary to fully comprehend this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning-near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution (∼50 nm) and dielectric constant contrast for a porphyrin film on HOPG. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission-fusion dynamics in pluripotent ESCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine bivalve mollusc,Mytilus edulis (blue mussel), is a noted accumulator of many environmental pollutants and is increasingly used for the chemical and biological assessment of environmental impact. The toxic effects of crude oil-derived aromatic hydrocarbons (30 μg/l total hydrocarbons) on the lysosomal-vacuolar system of the digestive cells have been investigated in cryostat sections of hexane-frozen digestive glands. Exposure to aromatic hydrocarbons reduced the cytochemically determined latency of lysosomal β-N-acetylhexosaminidase; lysosomal volume density and surface density increased while the numerical density decreased. Experimental exposure resulted in the formation of very large lysosomes which are believed to be largely autophagic in function and these results indicate a significant structural and functional disturbance of digestive cell lysosomes in response to hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A widespread and complex distribution of vitamin requirements exists over the entire tree of life, with many species having evolved vitamin dependence, both within and between different lineages. Vitamin availability has been proposed to drive selection for vitamin dependence, in a process that links an organism's metabolism to the environment, but this has never been demonstrated directly. Moreover, understanding the physiological processes and evolutionary dynamics that influence metabolic demand for these important micronutrients has significant implications in terms of nutrient acquisition and, in microbial organisms, can affect community composition and metabolic exchange between coexisting species. Here we investigate the origins of vitamin dependence, using an experimental evolution approach with the vitamin B(12)-independent model green alga Chlamydomonas reinhardtii. In fewer than 500 generations of growth in the presence of vitamin B(12), we observe the evolution of a B(12)-dependent clone that rapidly displaces its ancestor. Genetic characterization of this line reveals a type-II Gulliver-related transposable element integrated into the B(12)-independent methionine synthase gene (METE), knocking out gene function and fundamentally altering the physiology of the alga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A coherent superposition of rotational states in D2 has been excited by nonresonant, ultrafast (12 fs), intense (2×1014 W cm-2) 800 nm laser pulses, leading to impulsive dynamic alignment. Field-free evolution of this rotational wave packet has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, . The detailed fractional revivals of the neutral D2 wave packet as a function of and evolution time have been observed and modeled theoretically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background— Observational evidence has consistently linked increased fruit and vegetable consumption with reduced cardiovascular morbidity; however, there is little direct trial evidence to support the concept that fruit and vegetable consumption improves vascular function. This study assessed the dose-dependent effects of a fruit and vegetable intervention on arterial health in subjects with hypertension.

Methods and Results— After a 4-week run-in period during which fruit and vegetable intake was limited to 1 portion per day, participants were randomized to consume either 1, 3, or 6 portions daily for the next 8 weeks. Endothelium-dependent and -independent arterial vasodilator responses were assessed by venous occlusion plethysmography in the brachial circulation before and after intervention. Compliance was monitored with serial contemporaneous 4-day food records and by measuring concentrations of circulating dietary biomarkers. A total of 117 volunteers completed the 12-week study. Participants in the 1-, 3-, and 6-portions/d groups reported consuming on average 1.1, 3.2, and 5.6 portions of fruit and vegetables, respectively, and serum concentrations of lutein and ß-cryptoxanthin increased across the groups in a dose-dependent manner. For each 1-portion increase in reported fruit and vegetable consumption, there was a 6.2% improvement in forearm blood flow responses to intra-arterial administration of the endothelium-dependent vasodilator acetylcholine (P=0.03). There was no association between increased fruit and vegetable consumption and vasodilator responses to sodium nitroprusside, an endothelium-independent vasodilator.

Conclusions— The present study illustrates that among hypertensive volunteers, increased fruit and vegetable consumption produces significant improvements in an established marker of endothelial function and cardiovascular prognosis.