864 resultados para foundations of mathematics
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.
Resumo:
It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.
Resumo:
∗The first author was partially supported by MURST of Italy; the second author was par- tially supported by RFFI grant 99-01-00233.
Resumo:
*Research partially supported by INTAS grant 97-1644.
Resumo:
*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.
Resumo:
A boundary-value problems for almost nonlinear singularly perturbed systems of ordinary differential equations are considered. An asymptotic solution is constructed under some assumption and using boundary functions and generalized inverse matrix and projectors.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
A γ-space with a strictly positive measure is separable. An example of a non-separable γ−space with c.c.c. is given. A P−space with c.c.c. is countable and discrete.
Resumo:
∗ Partially supported by INTAS grant 97-1644
Resumo:
It is shown that the spheres S^(2n) (resp: S^k with k ≡ 1 mod 4) can be given neither an indefinite metric of any signature (resp: of signature (r, k − r) with 2 ≤ r ≤ k − 2) nor an almost paracomplex structure. Further for every given Riemannian metric on an almost para-Hermitian manifold with the associated 2-form φ one can construct an almost Hermitian structure (under certain conditions, two different almost Hermitian structures) whose associated 2-form(s) is φ.
Resumo:
Here we study the integers (d, g, r) such that on a smooth projective curve of genus g there exists a rank r stable vector bundle with degree d and spanned by its global sections.
Resumo:
The maximum M of a critical Bienaymé-Galton-Watson process conditioned on the total progeny N is studied. Imbedding of the process in a random walk is used. A limit theorem for the distribution of M as N → ∞ is proved. The result is trasferred to the non-critical processes. A corollary for the maximal strata of a random rooted labeled tree is obtained.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.