993 resultados para floristic patterns, biomass
Resumo:
Inoculation with arbuscular mycorrhizal fungi (AMF) of tree seedlings in the nursery is a biotechnological strategy to improve growth, survival after transplanting, biomass production and to reduce the use of fertilizers. Archontophoenix alexandrae and Euterpe edulis are palm species used in southern Brazil to produce the palm heart, the latter being included in the list of threatened species due to the overexploitation of its native population. The purpose of this paper was to evaluate the effect of mycorrhizal inoculation on growth and physiological parameters of A. alexandrae and E. edulis. After germination, the seedlings were inoculated (AMF) or not (CTL) with AMF in the treatments. Values of chlorophyll content, biomass and shoot phosphorus were not statistically different between the AMF and CTL treatments, after five months in the greenhouse. Inoculation with AMF significantly increased the levels of starch and soluble carbohydrates in shoots and roots of both species. Under field conditions, AMF had no effect on stem diameter and height after 12 and 24 months, but total plant biomass and leaf, stem and root biomass were greater in AMF than in CTL plants. The data indicated that AMF inoculation in the nursery has a strong effect on biomass accumulation after growing for 24 months under field conditions. Therefore, AMF inoculation should be considered an important strategy to increase growth and production of these economically important tropical palm species.
Resumo:
We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (nonzero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a fundamental role of surface tension in the dynamics of the problem. A multifinger extension of microscopic solvability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
Resumo:
Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.
Resumo:
Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.
Resumo:
Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.
Resumo:
OBJECTIVE: With the increased survival of very preterm infants, there is a growing concern for their developmental and socioemotional outcomes. The quality of the early mother-infant relationship has been noted as 1 of the factors that may exacerbate or soften the potentially adverse impact of preterm birth, particularly concerning the infant's later competencies and development. The first purpose of the study was to identify at 6 months of corrected age whether there were specific dyadic mother-infant patterns of interaction in preterm as compared with term mother-infant dyads. The second purpose was to examine the potential impact of these dyadic patterns on the infant's behavioral and developmental outcomes at 18 months of corrected age. METHODS: During a 12-month period (January-December 1998), all preterm infants who were <34 weeks of gestational age and hospitalized at the NICU of the Lausanne University Hospital were considered for inclusion in this longitudinal prospective follow-up study. Control healthy term infants were recruited during the same period from the maternity ward of our hospital. Mother-infant dyads with preterm infants (n = 47) and term infants (n = 25) were assessed at 6 months of corrected age during a mother-infant play interaction and coded according to the Care Index. This instrument evaluates the mother's interactional behavior according to 3 scales (sensitivity, control, and unresponsiveness) and the child's interactional behavior according to 4 scales (cooperation, compliance, difficult, and passivity). At 18 months, behavioral outcomes of the children were assessed on the basis of a semistructured interview of the mother, the Symptom Check List. The Symptom Check List explores 4 groups of behavioral symptoms: sleeping problems, eating problems, psychosomatic symptoms, and behavioral and emotional disorders. At the same age, developmental outcomes were evaluated using the Griffiths Developmental Scales. Five areas were evaluated: locomotor, personal-social, hearing and speech, eye-hand coordination, and performance. RESULTS: Among the possible dyadic patterns of interaction, 2 patterns emerge recurrently in mother-infant preterm dyads: a "cooperative pattern" with a sensitive mother and a cooperative-responsive infant (28%) and a "controlling pattern" with a controlling mother and a compulsive-compliant infant (28%). The remaining 44% form a heterogeneous group that gathers all of the other preterm dyads and is composed of 1 sensitive mother-passive infant; 10 controlling mothers with a cooperative, difficult, or passive infant; and 10 unresponsive mothers with a cooperative, difficult, or passive infant. Among the term control subjects, 68% of the dyads are categorized as cooperative pattern dyads, 12% as controlling pattern dyads, and the 20% remaining as heterogeneous dyads. At 18 months, preterm infants of cooperative pattern dyads have similar outcomes as the term control infants. Preterm infants of controlling pattern dyads have significantly fewer positive outcomes as compared with preterm infants of cooperative pattern dyads, as well as compared with term control infants. They display significantly more behavioral symptoms than term infants, including more eating problems than term infants as well as infants from cooperative preterm dyads. Infants of the controlling preterm dyads do not differ significantly for the total development quotient but have worse personal-social development than term infants and worse hearing-speech development than infants from cooperative preterm dyads. The preterm infants of the heterogeneous group have outcomes that can be considered as intermediate with no significant differences compared with preterm infants from the cooperative pattern or the controlling pattern dyads. CONCLUSION: Among mother-preterm infant dyads, we identified 2 specific patterns of interaction that could play either a protective (cooperative pattern) or a risk-precipitating (controlling pattern) role on developmental and behavioral outcome, independent of perinatal risk factors and of the family's socioeconomic background. The controlling pattern is much more prevalent among preterm than term dyads and is related to a less favorable infant outcome. However, the cooperative pattern still represents almost 30% of the preterm dyads, with infants' outcome comparable to the ones of term infants. These results point out the impact of the quality of mother-infant relationship on the infant's outcome. The most important clinical implication should be to support a healthy parent-infant relationship already in the NICU but also in the first months of the infant's life. Early individualized family-based interventions during neonatal hospitalization and transition to home have been shown to reduce maternal stress and depression and increase maternal self-esteem and to improve positive early parent-preterm infant interactions.
Resumo:
A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.
Resumo:
BACKGROUND: To evaluate the outcome of patients with carcinoma of anal margin in terms of recurrence, survival, and radiation toxicity. METHODS: A series of 45 consecutive patients, with anal margin carcinoma treated between 1983 and 2006 with curative intent at two institutions, was retrospectively analyzed. A surgical excision (close or positive surgical margin in 22 out of 29 patients) was realized before radiotherapy (RT). RT consisted of definitive external beam RT (EBRT) in 36 patients, brachytherapy (BT) alone in two patients, and both BT and EBRT in seven patients. The median total radiation dose was 59.4 Gy (range, 30-74 Gy). RESULTS: The 5-year locoregional control (LRC) rate was 78% [95% confidence interval (CI), 64-93%]. The 5-year disease-specific survival (DSS) and overall survival (OS) rates were respectively 86% (95% CI, 72-99%) and 55% (95% CI, 44-66%). The overall anal conservation rate was 80% for the whole series. There was no significant association between local recurrence and patient age, histological grade, tumor size, T stage, overall treatment time, RT dose, or chemotherapy. Long-term side effects were observed in 15 patients (33%). Only three patients developed grade 3-4 late toxicity (CTCAE/NCI v3.0). Significant relationship was found between dose, and complication rate (48% for dose >or=59.4 Gy versus 8% for dose < 59.4 Gy; P = 0.03). CONCLUSIONS: We conclude that definitive RT and/or BT yield a good local control and disease-specific survival comparable with published data. This study suggests that radiation dose over 59.4 Gy seems to increase treatment-related morbidity.
Resumo:
Summary
Resumo:
Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.
Resumo:
Switzerland, the country with the highest health expenditure per capita, is lacking data on trauma care and system planning. Recently, 12 trauma centres were designated to be reassessed through a future national trauma registry by 2015. Lausanne University Hospital launched the first Swiss trauma registry in 2008, which contains the largest database on trauma activity nationwide. METHODS: Prospective analysis of data from consecutively admitted shock room patients from 1 January 2008 to 31 December 2012. Shock room admission is based on physiology and mechanism of injury, assessed by prehospital physicians. Management follows a surgeon-led multidisciplinary approach. Injuries are coded by Association for the Advancement of Automotive Medicine (AAAM) certified coders. RESULTS: Over the 5 years, 1,599 trauma patients were admitted, predominantly males with a median age of 41.4 years and median injury severity score (ISS) of 13. Rate of ISS >15 was 42%. Principal mechanisms of injury were road traffic (40.4%) and falls (34.4%), with 91.5% blunt trauma. Principal patterns were brain (64.4%), chest (59.8%) and extremity/pelvic girdle (52.9%) injuries. Severe (abbreviated injury scale [AIS] score ≥ 3) orthopaedic injuries, defined as extremity and spine injuries together, accounted for 67.1%. Overall, 29.1% underwent immediate intervention, mainly by orthopaedics (27.3%), neurosurgeons (26.3 %) and visceral surgeons (13.9%); 43.8% underwent a surgical intervention within the first 24 hours and 59.1% during their hospitalisation. In-hospital mortality for patients with ISS >15 was 26.2%. CONCLUSION: This is the first 5-year report on trauma in Switzerland. Trauma workload was similar to other European countries. Despite high levels of healthcare, mortality exceeds published rates by >50%. Regardless of the importance of a multidisciplinary approach, trauma remains a surgical disease and needs dedicated surgical resources.
Resumo:
The molecular mechanisms controlling the progression of melanoma from a localized tumor to an invasive and metastatic disease are poorly understood. In the attempt to start defining a functional protein profile of melanoma progression, we have analyzed by LC-MS/MS the proteins associated with detergent resistant membranes (DRMs), which are enriched in cholesterol/sphingolipids-containing membrane rafts, of melanoma cell lines derived from tumors at different stages of progression. Since membrane rafts are involved in several biological processes, including signal transduction and protein trafficking, we hypothesized that the association of proteins with rafts can be regulated during melanoma development and affect protein function and disease progression. We have identified a total of 177 proteins in the DRMs of the cell lines examined. Among these, we have found groups of proteins preferentially associated with DRMs of either less malignant radial growth phase/vertical growth phase (VGP) cells, or aggressive VGP and metastatic cells suggesting that melanoma cells with different degrees of malignancy have different DRM profiles. Moreover, some proteins were found in DRMs of only some cell lines despite being expressed at similar levels in all the cell lines examined, suggesting the existence of mechanisms controlling their association with DRMs. We expect that understanding the mechanisms regulating DRM targeting and the activity of the proteins differentially associated with DRMs in relation to cell malignancy will help identify new molecular determinants of melanoma progression.
Resumo:
ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.