922 resultados para extreme hydro meteorological phenomena
Resumo:
Current global atmospheric models fail to simulate well organised tropical phenomena in which convection interacts with dynamics and physics. A new methodology to identify convectively coupled equatorial waves, developed by NCAS-Climate, has been applied to output from the two latest models of the Met Office/Hadley Centre which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behaviour in the models are examined and evaluated against a previous comprehensive study of observations. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However they perform poorly for waves coupled with equatorial convection. The vertical structure of the simulated wave is not conducive to energy conversion/growth and does not support the correct physical-dynamical coupling that occurs in the real world. The following figure shows an example of the Kelvin wave coupled with equatorial convection. It shows that the models fail to simulate a key feature of convectively coupled Kelvin wave in observations, namely near surface anomalous equatorial zonal winds together with intensified equatorial convection and westerly winds in phase with the convection. The models are also not able to capture the observed vertical tilt structure and the vertical propagation of the Kelvin wave into the lower stratosphere as well as the secondary peak in the mid-troposphere, particularly in HadAM3. These results can be used to provide a test-bed for experimentation to improve the coupling of physics and dynamics in climate and weather models.
Resumo:
Numerous factors are associated with poverty and underdevelopment in Africa, including climate variability. Rainfall, and climate more generally, are implicated directly in the United Nations “Millennium Development Goals” to eradicate extreme poverty and hunger, and reduce child mortality and incidence of diseases such as malaria by the target date of 2015. But, Africa is not currently on target to meet these goals. We pose a number of questions from a climate science perspective aimed at understanding this background: Is there a common origin to factors that currently constrain climate science? Why is it that in a continent where human activity is so closely linked to interannual rainfall variability has climate science received little of the benefit that saw commercialization driving meteorology in the developed world? What might be suggested as an effective way for the continent to approach future climate variability and change? We make the case that a route to addressing the challenges of climate change in Africa rests with the improved management of climate variability. We start by discussing the constraints on climate science and how they might be overcome. We explain why the optimal management of activities directly influenced by interannual climate variability (which include the development of scientific capacity) has the potential to serve as a forerunner to engagement in the wider issue of climate change. We show this both from the perspective of the climate system and the institutions that engage with climate issues. We end with a thought experiment that tests the benefits of linking climate variability and climate change in the setting of smallholder farmers in Limpopo Province, South Africa.
Resumo:
The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.
Resumo:
Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.
Resumo:
Mesoscale convective systems (MCSs) are relatively rare events in the UK but, when they do occur, can be associated with weather that is considered extreme with respect to climatology (as indicated by the number of such events that have been analysed as case studies). These case studies usually associate UK MCSs with a synoptic environment known as the Spanish plume. Here a previously published 17 year climatology of UK MCS events is extended to the present day (from 1998 to 2008) and these events classified according to the synoptic environment in which they form. Three distinct synoptic environments have been identified, here termed the classical Spanish plume, modified Spanish plume, and European easterly plume. Detailed case studies of the two latter, newly defined, environments are presented. Composites produced for each environment further reveal the differences between them. The classical Spanish plume is associated with an eastward propagating baroclinic cyclone that evolves according to idealised life cycle 1. Conditional instability is released from a warm moist plume of air advected northeastwards from Iberia that is capped by warmer, but very dry air, from the Spanish plateau. The modified Spanish plume is associated with a slowly moving mature frontal system associated with a forward tilting trough (and possibly cut-off low) at 500 hPa that evolves according to idealised life cycle 2. As in the classical Spanish plume, conditional instability is released from a warm plume of air advected northwards from Iberia. The less frequent European easterly plume is associated with an omega block centred over Scandinavia at upper levels. Conditional instability is released from a warm plume of air advected westwards across northern continental Europe. Unlike the Spanish plume environments, the European easterly plume is not a warm sector phenomena associated with a baroclinic cyclone. However, in all environments the organisation of convection is associated with the interaction of an upper-level disturbance with a low-level region of warm advection.
Resumo:
The importance of temperature in the determination of the yield of an annual crop (groundnut; Arachis hypogaea L. in India) was assessed. Simulations from a regional climate model (PRECIS) were used with a crop model (GLAM) to examine crop growth under simulated current (1961-1990) and future (2071-2100) climates. Two processes were examined: the response of crop duration to mean temperature and the response of seed-set to extremes of temperature. The relative importance of, and interaction between, these two processes was examined for a number of genotypic characteristics, which were represented by using different values of crop model parameters derived from experiments. The impact of mean and extreme temperatures varied geographically, and depended upon the simulated genotypic properties. High temperature stress was not a major determinant of simulated yields in the current climate, but affected the mean and variability of yield under climate change in two regions which had contrasting statistics of daily maximum temperature. Changes in mean temperature had a similar impact on mean yield to that of high temperature stress in some locations and its effects were more widespread. Where the optimal temperature for development was exceeded, the resulting increase in duration in some simulations fully mitigated the negative impacts of extreme temperatures when sufficient water was available for the extended growing period. For some simulations the reduction in mean yield between the current and future climates was as large as 70%, indicating the importance of genotypic adaptation to changes in both means and extremes of temperature under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Diversification of insect herbivores is often associated with coevolution between plant toxins and insect countermeasures, resulting in a specificity that restricts host plant shifts. Gall inducers, however, bypass plant toxins and the factors influencing host plant associations in these specialized herbivores remain unclear. We reconstructed the evolution of host plant associations in Western Palaearctic oak gallwasps (Cynipidae: Cynipini), a species-rich lineage of specialist herbivores on oak (Quercus). (1) Bayesian analyses of sequence data for three genes revealed extreme host plant conservatism, with inferred shifts between major oak lineages (sections Cerris and Quercus) closely matching the minimum required to explain observed diversity. It thus appears that the coevolutionary demands of gall induction constrain host plant shifts, both in cases of mutualism (e.g., fig wasps, yucca moths) and parasitism (oak gallwasps). (2) Shifts between oak sections occurred independently in sexual and asexual generations of the gallwasp lifecycle, implying that these can evolve independently. (3) Western Palaearctic gallwasps associated with sections Cerris and Quercus diverged at least 20 million years ago (mya), prior to the arrival of oaks in the Western Palaearctic from Asia 5-7 mya. This implies an Asian origin for Western Palaearctic gallwasps, with independent westwards range expansion by multiple lineages.