825 resultados para estradiol
Resumo:
This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization--dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes.
Resumo:
Abstract Background: Aromatase deficiency may result in a complete block of estrogen synthesis because of the failure to convert androgens to estrogens. In females, this results in virilisation at birth, ovarian cysts in prepuberty and lack of pubertal development but virilisation, thereafter. Objective and methods: We studied the impact of oral 17β-estradiol treatment on ovarian and uterine development, and on LH/FSH and inhibin B during the long-term follow-up of a girl harboring compound heterozygote point mutations in the CYP19A1 gene. Results: In early childhood, low doses of oral 17β-estradiol were needed. During prepuberty treatment with slowly increasing doses of E2 resulted in normal uterine and almost normal development of ovarian volume, as well as number and size of follicles. Regarding hormonal feedback mechanisms, inhibin B levels were in the upper normal range during childhood and puberty. Low doses of estradiol did not suffice to achieve physiological gonadotropin levels in late prepuberty and puberty. However, when estradiol doses were further increased in late puberty levels of both FSH and LH declined with estradiol levels within normal range. Conclusion: Complete aromatase deficiency provides an excellent model of how ovarian and uterine development in relation to E2, LH, FSH and inhibin B feedback progresses from infancy to adolescence.
Resumo:
Intensified aquaculture has strong impact on fish health by stress and infectious diseases and has stimulated the interest in the orchestration of cytokines and growth factors, particularly their influence by environmental factors, however, only scarce data are available on the GH/IGF-system, central physiological system for development and tissue shaping. Most recently, the capability of the host to cope with tissue damage has been postulated as critical for survival. Thus, the present study assessed the combined impacts of estrogens and bacterial infection on the insulin-like growth factors (IGF) and tumor-necrosis factor (TNF)-α. Juvenile rainbow trout were exposed to 2 different concentrations of 17β-estradiol (E2) and infected with Yersinia ruckeri. Gene expressions of IGF-I, IGF-II and TNF-α were measured in liver, head kidney and spleen and all 4 estrogen receptors (ERα1, ERα2, ERβ1 and ERβ2) known in rainbow trout were measured in liver. After 5 weeks of E2 treatment, hepatic up-regulation of ERα1 and ERα2, but down-regulation of ERß1 and ERß2 were observed in those groups receiving E2-enriched food. In liver, the results further indicate a suppressive effect of Yersinia-infection regardless of E2-treatment on day 3, but not of E2-treatment on IGF-I whilst TNF-α gene expression was not influenced by Yersinia-infection but was reduced after 5 weeks of E2-treatment. In spleen, the results show a stimulatory effect of Yersinia-infection, but not of E2-treatment on both, IGF-I and TNF-α gene expressions. In head kidney, E2 strongly suppressed both, IGF-I and TNF-α. To summarise, the treatment effects were tissue- and treatment-specific and point to a relevant role of IGF-I in infection.
Resumo:
Endokrine Disruptoren sind Umweltsubstanzen, die in das Hormonsystem von Organismen eingreifen, und dadurch zu schädlichen Wirkungen führen. Sie entfalten ihre Wirkung entweder, indem sie den Hormonstoffwechsel stören oder indem sie die Wirkung von Hormonen imitieren. Eine wichtige Gruppe von endokrinen Disruptoren in der aquatischen Umwelt sind Stoffe, die an Östrogenrezeptoren binden und dadurch wie das weibliche Sexualhormon, 17β-Östradiol wirken. Zu den Umweltöstrogenen gehören sowohl synthetische Chemikalien wie auch natürliche Substanzen. Sowohl Laborversuche wie Felduntersuchungen an Fischen haben gezeigt, dass bereits sehr niedrige Konzentrationen von Umweltöstrogenen in Gewässern in der Lage sind, Störungen des Hormonsystems auszulösen. Environmental estrogens Endocrine disrupters are environmental substances which interfere with the hormone system of organisms and thereby induce adverse effects. They exert their biological activity either by disrupting hormone metabolism or by imitating the biological action of the endogenous hormones. In the aquatic environment, an important group of endocrine disrupters is represented by the estrogen-active compounds, which mimic the female sex hormone, 17β-estradiol. Both laboratory experiments and field studies on fishes have demonstrated that already very low concentrations of environmental estrogens are able to induce disturbances in the hormone system and hormone-regulated processes of fishes.
Resumo:
PURPOSE Vascular disease is the leading cause of death in women. One-third of acute events affect women below age 60, when the prevalence of menopausal symptoms is high. This raises the question if hormone replacement therapy (HRT) may be an appropriate treatment for individual women although vascular disease is generally considered a contraindication. METHODS Selective literature search was used for this study. RESULTS In healthy women, HRT increases risks for venous thromboembolism and ischemic stroke, but for cardiovascular disease apparently only beyond 10 years after menopause or 60 years of age. Limited data in women with cardio or cerebrovascular disease have not demonstrated an increased risk for a vascular recurrent event, but for the first year after initiation. In HRT users affected by a cardiovascular event continuation of HRT has not been found to be associated with adverse outcome. Low dose estradiol--preferentially as transdermal patches, if necessary combined with metabolically neutral progestins--appears to convey lower risk. CONCLUSIONS Safety data on HRT in survivors of cardiovascular events or ischemic stroke are limited, but exceptionally increased risk appears to be excluded. If off-label use of HRT is considered to be initiated or continued in women with cardio- or cerebrovascular disease, extensive counseling on the pros and cons of HRT is mandatory.
Resumo:
Abstract Context: Mammary and placental 17β-hydroxysteroid dehydrogenase type 1 (17βHSD1). Objective: To assess the impact of testosterone, tibolone, and black cohosh on purified mammary and placental 17βHSD1. Materials and methods: 17βHSD1 was purified from human mammary gland and placenta by column chromatography, its activity was monitored by a radioactive activity assay, and the degree of purification was determined by gel electrophoresis. Photometric cofactor transformation analysis was performed to assess 17βHSD1 activity without or in presence of testosterone, tibolone and black cohosh. Results: 17βHSD1 from both sources displayed a comparable basal activity. Testosterone and tibolone metabolites inhibited purified mammary and placental 17βHSD1 activity to a different extent, whereas black cohosh had no impact. Discussion: Studies on purified enzymes reveal the individual action of drugs on local regulatory mechanisms thus helping to develop more targeted therapeutic intervention. Conclusion: Testosterone, tibolone and black cohosh display a beneficial effect on local mammary estrogen metabolism by not affecting or decreasing local estradiol exposure.
Resumo:
OBJECTIVES The intensity of post-egg retrieval pain is underestimated, with few studies examining post-procedural pain and predictors to identify women at risk for severe pain. We evaluated the influence of pre-procedural hormonal levels, ovarian factors, as well as mechanical temporal summation (mTS) as predictors for post-egg retrieval pain in women undergoing in vitro fertilization (IVF). METHODS Eighteen women scheduled for ultrasound-guided egg retrieval under standardized anesthesia and post-procedural analgesia were enrolled. Pre-procedural mTS, questionnaires, clinical data related to anesthesia and the procedure itself, post-procedural pain scores and pain medication for breakthrough pain were recorded. Statistical analysis included Pearson product moment correlations, Mann-Whitney U tests and multiple linear regressions. RESULTS Average peak post-egg retrieval pain during the first 24 hours was 5.0±1.6 on an NRS scale (0=no pain, 10=worst pain imaginable). Peak post-egg retrieval pain was correlated with basal antimullerian hormone (AMH) (r=0.549, P=0.018), pre-procedural peak estradiol (r=0.582, P=0.011), total number of follicles (r=0.517, P=0.028) and number of retrieved eggs (r=0.510, P=0.031). Ovarian hyperstimulation syndrome (OHSS) (n=4) was associated with higher basal AMH (P=0.004), higher peak pain scores (P=0.049), but not with peak estradiol (P=0.13). The mTS did not correlate with peak post-procedural pain (r=0.266, P=0.286), or peak estradiol level (r=0.090, P=0.899). DISCUSSION Peak post-egg retrieval pain intensity was higher than anticipated. Our results suggest that post-egg retrieval pain can be predicted by baseline AMH, high peak estradiol, and OHSS. Further studies to evaluate intra- and post-procedural pain in this population are needed, as well as clinical trials to assess post-procedural analgesia in women presenting with high hormonal levels.
Resumo:
BACKGROUND Hirsutism occurs in 5% to 10% of women of reproductive age when there is excessive terminal hair growth in androgen-sensitive areas (male pattern). It is a distressing disorder with a major impact on quality of life. The most common cause is polycystic ovary syndrome. There are many treatment options, but it is not clear which are most effective. OBJECTIVES To assess the effects of interventions (except laser and light-based therapies alone) for hirsutism. SEARCH METHODS We searched the Cochrane Skin Group Specialised Register, CENTRAL (2014, Issue 6), MEDLINE (from 1946), EMBASE (from 1974), and five trials registers, and checked reference lists of included studies for additional trials. The last search was in June 2014. SELECTION CRITERIA Randomised controlled trials (RCTs) in hirsute women with polycystic ovary syndrome, idiopathic hirsutism, or idiopathic hyperandrogenism. DATA COLLECTION AND ANALYSIS Two independent authors carried out study selection, data extraction, 'Risk of bias' assessment, and analyses. MAIN RESULTS We included 157 studies (sample size 30 to 80) comprising 10,550 women (mean age 25 years). The majority of studies (123/157) were 'high', 30 'unclear', and four 'low' risk of bias. Lack of blinding was the most frequent source of bias. Treatment duration was six to 12 months. Forty-eight studies provided no usable or retrievable data, i.e. lack of separate data for hirsute women, conference proceedings, and losses to follow-up above 40%.Primary outcomes, 'participant-reported improvement of hirsutism' and 'change in health-related quality of life', were addressed in few studies, and adverse events in only half. In most comparisons there was insufficient evidence to determine if the number of reported adverse events differed. These included known adverse events: gastrointestinal discomfort, breast tenderness, reduced libido, dry skin (flutamide and finasteride); irregular bleeding (spironolactone); nausea, diarrhoea, bloating (metformin); hot flushes, decreased libido, vaginal dryness, headaches (gonadotropin-releasing hormone (GnRH) analogues)).Clinician's evaluation of hirsutism and change in androgen levels were addressed in most comparisons, change in body mass index (BMI) and improvement of other clinical signs of hyperandrogenism in one-third of studies.The quality of evidence was moderate to very low for most outcomes.There was low quality evidence for the effect of two oral contraceptive pills (OCPs) (ethinyl estradiol + cyproterone acetate versus ethinyl estradiol + desogestrel) on change from baseline of Ferriman-Gallwey scores. The mean difference (MD) was -1.84 (95% confidence interval (CI) -3.86 to 0.18).There was very low quality evidence that flutamide 250 mg, twice daily, reduced Ferriman-Gallwey scores more effectively than placebo (MD -7.60, 95% CI -10.53 to -4.67 and MD -7.20, 95% CI -10.15 to -4.25). Participants' evaluations in one study with 20 participants confirmed these results (risk ratio (RR) 17.00, 95% CI 1.11 to 259.87).Spironolactone 100 mg daily was more effective than placebo in reducing Ferriman-Gallwey scores (MD -7.69, 95% CI -10.12 to -5.26) (low quality evidence). It showed similar effectiveness to flutamide in two studies (MD -1.90, 95% CI -5.01 to 1.21 and MD 0.49, 95% CI -1.99 to 2.97) (very low quality evidence), as well as to finasteride in two studies (MD 1.49, 95% CI -0.58 to 3.56 and MD 0.40, 95% CI -1.18 to 1.98) (low quality evidence).Although there was very low quality evidence of a difference in reduction of Ferriman-Gallwey scores for finasteride 5 mg to 7.5 mg daily versus placebo (MD -5.73, 95% CI -6.87 to -4.58), it was unlikely it was clinically meaningful. These results were reinforced by participants' assessments (RR 2.06, 95% CI 0.99 to 4.29 and RR 11.00, 95% CI 0.69 to 175.86). However, finasteride showed inconsistent results in comparisons with other treatments, and no firm conclusions could be reached.Metformin demonstrated no benefit over placebo in reduction of Ferriman-Gallwey scores (MD 0.05, 95% CI -1.02 to 1.12), but the quality of evidence was low. Results regarding the effectiveness of GnRH analogues were inconsistent, varying from minimal to important improvements.We were unable to pool data for OCPs with cyproterone acetate 20 mg to 100 mg due to clinical and methodological heterogeneity between studies. However, addition of cyproterone acetate to OCPs provided greater reductions in Ferriman-Gallwey scores.Two studies, comparing finasteride 5 mg and spironolactone 100 mg, did not show differences in participant assessments and reduction of Ferriman-Gallwey scores (low quality evidence). Ferriman-Gallwey scores from three studies comparing flutamide versus metformin could not be pooled (I² = 62%). One study comparing flutamide 250 mg twice daily with metformin 850 mg twice daily for 12 months, which reached a higher cumulative dosage than two other studies evaluating this comparison, showed flutamide to be more effective (MD -6.30, 95% CI -9.83 to -2.77) (very low quality evidence). Data showing reductions in Ferriman-Gallwey scores could not be pooled for four studies comparing finasteride with flutamide as the results were inconsistent (I² = 67%).Studies examining effects of hypocaloric diets reported reductions in BMI, but which did not result in reductions in Ferriman-Gallwey scores. Although certain cosmetic measures are commonly used, we did not identify any relevant RCTs. AUTHORS' CONCLUSIONS Treatments may need to incorporate pharmacological therapies, cosmetic procedures, and psychological support. For mild hirsutism there is evidence of limited quality that OCPs are effective. Flutamide 250 mg twice daily and spironolactone 100 mg daily appeared to be effective and safe, albeit the evidence was low to very low quality. Finasteride 5 mg daily showed inconsistent results in different comparisons, therefore no firm conclusions can be made. As the side effects of antiandrogens and finasteride are well known, these should be accounted for in any clinical decision-making. There was low quality evidence that metformin was ineffective for hirsutism and although GnRH analogues showed inconsistent results in reducing hirsutism they do have significant side effects.Further research should consist of well-designed, rigorously reported, head-to-head trials examining OCPs combined with antiandrogens or 5α-reductase inhibitor against OCP monotherapy, as well as the different antiandrogens and 5α-reductase inhibitors against each other. Outcomes should be based on standardised scales of participants' assessment of treatment efficacy, with a greater emphasis on change in quality of life as a result of treatment.
Resumo:
o,p'-DDT is a major component of the pesticide DDT (dichlorodiphenyltrichloro ethane, technical grade). Although possessing little insecticidal ability, the o,p'- isomer has two major biological activities which affect mammalian reproductive systems: it is estrogenic, and it induces hepatic mixed function oxidase enzymes. The focus of this work is the characterization of the estrogenic properties of o,p'-DDT in rodents.^ Initial studies examined the ability of o,p'-DDT to bind to and interact with elements of the estrogen receptor system. In an in vitro assay, DDT was shown to compete with 17(beta)-estradiol (E(,2)) for binding to cytoplasmic estrogen receptors (R(,c)) from normal and neoplastic tissues in two rodent species. The following phenomena were studied by measuring receptor levels from uteri (whole uteri and/or uterine cell types) taken from immature ovariectomized rats given one acute injection of o,p'-DDT or E(,2): the translocation of the R(,c) to the nucleus, nuclear receptor (R(,n)) retention patterns, and the subsequent reappearance of R(,c) in the cytoplasm.^ The magnitude and temporal patterns of the biological responses of uteri from similar immature rats were compared following o,p'-DDT and E(,2) exposure. The responses examined included increased "Induced Protein" synthesis (in vitro); and uterine wet weight, DNA synthesis and mitosis (in vivo).^ From dose-response data, correlations were made between R(,n) levels and levels of subsequent biological responses. The aim was to lend support to the premise that biological responses to o,p'-DDT exposure occur as a result of its interaction with the classical estrogen receptor system. Correlation coefficients of 0.95 to 0.98 were obtained between R(,n) levels and levels of responses examined, strongly supporting this hypothesis.^ Finally, o,p'-DDT was shown to be as effective as E(,2) in supporting the growth of a transplantable estrogen-responsive mammary tumor in adult rats (although it was unable to support the growth of a transplantable estrogen-dependent renal tumor in hamsters). While the positive result cannot be directly extrapolated to human or animal exposure to environmental estrogens, it suggests that hyperplastic responses of estrogen sensitive tissues should be considered as a possible toxicity of o,p'-DDT, related compounds having estrogenic properties, and other environmental estrogens. ^
Resumo:
Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^
Resumo:
Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^
Resumo:
Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.
Resumo:
Diethylstilbestrol (DES) is a known human carcinogen and teratogen whose mechanism of action remains undetermined. As essentially diploid Chinese hamster cell line (Don) was used to test diethylstilbestrol (DES), dienestrol, hexestrol and the naturally occurring estrogens, estradiol and estriol for their ability to cause metaphase arrest and to induce aneuploidy. These compounds arrest mitosis within a narrow range of high concentrations and induce aneuploidy in recovering cell populations. DES was the most effective arrestant on a comparative molar basis. Estradiol and estriol were less potent as arrestants but were effective inducers of aneuploidy. Aneuploidy was induced in a non-random manner. The smallest chromosomes were most frequently recorded in aneuploid cells. Using anti-tubulin antibody and indirect immunofluorescence, it was found that DES inhibits bi-polar spindle assembly and disrupts the cytoplasmic microtubule complex (CMTC). Estradiol arrests mitosis in a manner that allows spindle assembly. Estradiol has no apparent effect on the CMTC. The naturally occurring estrogens caused chromosome displacement during mitotic arrest. Electron microscopy confirmed that the displaced chromosomes appeared at the polar regions of arrested cells. The arresting effect of estradiol, and to some extent DES, was reduced by the addition of dibutyryl cyclic adenosine monophosphate (db-cAMP). Aneuploidy induction by DES and similar compounds may be related to their carcinogenic and/or teratogenic potential. ^
Resumo:
In this thesis a mouse model was used to examine the effect of pubertal estrogen inhibition and a phytoestrogen-free diet on the development of mammary glands. The study question was does treatment with aromatase inhibitor during puberty increase susceptibility to breast cancer among cohorts that consumed a diet free of phytoestrogens. The study design consisted of a cohort of mice treated with aromatase inhibitor, letrozole, during puberty and a vehicular group that was used as a control. Both groups were fed a diet free of phytoestrogens from the time of weaning until sacrifice during adulthood. The study aimed to assess mammary gland development in terms of breast cancer risk. The methods employed in this research included morphological and histological analysis of mammary glands, as well as estradiol, RNA and protein analysis. The main finding of the study was that mice exposed to aromatase inhibitor during puberty developed mammary glands with specific characteristics suggestive of vulnerability to oncogenesis such as increased lateral branching, increased number of glands, increase ductal hyperplasia, and diminished expression of TGFβ and p27 protein levels. The conclusions suggest that puberty is a critical period in which the mammary gland is susceptible to environmental threats that may result in deleterious epigenetic effects leading to an increased breast cancer risk in adulthood. This study has several public health implications; the most significant is that environmental threats during puberty may result in adverse mammary gland development and that phytoestrogen sources in the diet are necessary for normal maturation of the mammary glands.^
Resumo:
Children who experience early pubertal development have an increased risk of developing cancer (breast, ovarian, and testicular), osteoporosis, insulin resistance, and obesity as adults. Early pubertal development has been associated with depression, aggressiveness, and increased sexual prowess. Possible explanations for the decline in age of pubertal onset include genetics, exposure to environmental toxins, better nutrition, and a reduction in childhood infections. In this study we (1) evaluated the association between 415 single nucleotide polymorphisms (SNPs) from hormonal pathways and early puberty, defined as menarche prior to age 12 in females and Tanner Stage 2 development prior to age 11 in males, and (2) measured endocrine hormone trajectories (estradiol, testosterone, and DHEAS) in relation to age, race, and Tanner Stage in a cohort of children from Project HeartBeat! At the end of the 4-year study, 193 females had onset of menarche and 121 males had pubertal staging at age 11. African American females had a younger mean age at menarche than Non-Hispanic White females. African American females and males had a lower mean age at each pubertal stage (1-5) than Non-Hispanic White females and males. African American females had higher mean BMI measures at each pubertal stage than Non-Hispanic White females. Of the 415 SNPs evaluated in females, 22 SNPs were associated with early menarche, when adjusted for race ( p<0.05), but none remained significant after adjusting for multiple testing by False Discovery Rate (p<0.00017). In males, 17 SNPs were associated with early pubertal development when adjusted for race (p<0.05), but none remained significant when adjusted for multiple testing (p<0.00017). ^ There were 4955 hormone measurements taken during the 4-year study period from 632 African American and Non-Hispanic White males and females. On average, African American females started and ended the pubertal process at a younger age than Non-Hispanic White females. The mean age of Tanner Stage 2 breast development in African American and Non-Hispanic White females was 9.7 (S.D.=0.8) and 10.2 (S.D.=1.1) years, respectively. There was a significant difference by race in mean age for each pubertal stage, except Tanner Stage 1 for pubic hair development. Both Estradiol and DHEAS levels in females varied significantly with age, but not by race. Estradiol and DHEAS levels increased from Tanner Stage 1 to Tanner Stage 5.^ African American males had a lower mean age at each Tanner Stage of development than Non-Hispanic White males. The mean age of Tanner Stage 2 genital development in African American and Non-Hispanic White males was 10.5 (S.D.=1.1) and 10.8 (S.D.=1.1) years, respectively, but this difference was not significant (p=0.11). Testosterone levels varied significantly with age and race. Non-Hispanic White males had higher levels of testosterone than African American males from Tanner Stage 1-4. Testosterone levels increased for both races from Tanner Stage 1 to Tanner Stage 5. Testosterone levels had the steepest increase from ages 11-15 for both races. DHEAS levels in males varied significantly with age, but not by race. DHEAS levels had the steepest increase from ages 14-17. ^ In conclusion, African American males and females experience pubertal onset at a younger age than Non-Hispanic White males and females, but in this study, we could not find a specific gene that explained the observed variation in age of pubertal onset. Future studies with larger study populations may provide a better understanding of the contribution of genes in early pubertal onset.^