906 resultados para engineering design process
Resumo:
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
We calculate tangential momentum coefficients for the exchange of momentum between molecules in transport and the internal surface of a membrane pore, modelled as a simple atomic structure. We introduce a local specular reflection (LSR) hypothesis, which states that impinging molecules undergo mirror-like reflection in a plane tangent to a surface atom at the point of impact. As a consequence, the components of the velocity, parallel to the direction of flow will (in general) change on impact. The overall effect is a loss of tangential momentum, since more is lost in the upstream direction than is gained in the downstream direction. The loss of tangential momentum is greater when the size ratio of fluid to solid atom is small, allowing more steeply inclined impact planes to become accessible to the fluid phase molecules. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Computer-based, socio-technical systems projects are frequently failures. In particular, computer-based information systems often fail to live up to their promise. Part of the problem lies in the uncertainty of the effect of combining the subsystems that comprise the complete system; i.e. the system's emergent behaviour cannot be predicted from a knowledge of the subsystems. This paper suggests uncertainty management is a fundamental unifying concept in analysis and design of complex systems and goes on to indicate that this is due to the co-evolutionary nature of the requirements and implementation of socio-technical systems. The paper shows a model of the propagation of a system change that indicates that the introduction of two or more changes over time can cause chaotic emergent behaviour.
Resumo:
Symbiotic design methods aim to take into account technical, social and organizational criteria simultaneously. Over the years, many symbiotic methods have been developed and applied in various countries. Nevertheless, the diagnosis that only technical criteria receive attention in the design of production systems, is still made repeatedly. Examples of symbiotic approaches are presented at three different levels: technical systems, organizations, and the process. From these, discussion points are generated concerning the character of the approaches, the importance of economic motives, the impact of national environments, the necessity of a guided design process, the use of symbiotic methods, and the roles of participants in the design process.
Resumo:
When object databases arrived on the scene some ten years ago, they provided database capabilities for previously neglected, complex applications, such as CAD, but were burdened with one inherent teething problem, poor performance. Physical database design is one tool that can provide performance improvements and it is the general area of concern for this thesis. Clustering is one fruitful design technique which can provide improvements in performance. However, clustering in object databases has not been explored in depth and so has not been truly exploited. Further, clustering, although a physical concern, can be determined from the logical model. The object model is richer than previous models, notably the relational model, and so it is anticipated that the opportunities with respect to clustering are greater. This thesis provides a thorough analysis of object clustering strategies with a view to highlighting any links between the object logical and physical model and improving performance. This is achieved by considering all possible types of object logical model construct and the implementation of those constructs in terms of theoretical clusterings strategies to produce actual clustering arrangements. This analysis results in a greater understanding of object clustering strategies, aiding designers in the development process and providing some valuable rules of thumb to support the design process.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
This thesis presents a new approach to designing large organizational databases. The approach emphasizes the need for a holistic approach to the design process. The development of the proposed approach was based on a comprehensive examination of the issues of relevance to the design and utilization of databases. Such issues include conceptual modelling, organization theory, and semantic theory. The conceptual modelling approach presented in this thesis is developed over three design stages, or model perspectives. In the semantic perspective, concept definitions were developed based on established semantic principles. Such definitions rely on meaning - provided by intension and extension - to determine intrinsic conceptual definitions. A tool, called meaning-based classification (MBC), is devised to classify concepts based on meaning. Concept classes are then integrated using concept definitions and a set of semantic relations which rely on concept content and form. In the application perspective, relationships are semantically defined according to the application environment. Relationship definitions include explicit relationship properties and constraints. The organization perspective introduces a new set of relations specifically developed to maintain conformity of conceptual abstractions with the nature of information abstractions implied by user requirements throughout the organization. Such relations are based on the stratification of work hierarchies, defined elsewhere in the thesis. Finally, an example of an application of the proposed approach is presented to illustrate the applicability and practicality of the modelling approach.
Resumo:
The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.
Resumo:
While mobile devices offer many innovative possibilities to help increase the standard of living for individuals with disabilities and other special needs, the process of developing assistive technology, such that it will be effective across a group of individuals with a particular disability, can be extremely challenging. This chapter discusses key issues and trends related to designing and evaluating mobile assistive technology for individuals with disabilities. Following an overview of general design process issues, we argue (based on current research trends) that individuals with disabilities and domain experts be involved throughout the development process. While this, in itself, presents its own set of challenges, many strategies have successfully been used to overcome the difficulties and maximize the contributions of users and experts alike. Guidelines based on these strategies are discussed and are illustrated with real examples from one of our active research projects.
Resumo:
Purpose – This paper aims to provide a critical analysis of UK Government policy in respect of recent moves to attract young people into engineering. Drawing together UK and EU policy literature, the paper considers why young people fail to look at engineering positively. Design/methodology/approach – Drawing together UK policy, practitioner and academic-related literature the paper critically considers the various factors influencing young people's decision-making processes in respect of entering the engineering profession. A conceptual framework providing a diagrammatic representation of the “push” and “pull” factors impacting young people at pre-university level is given. Findings – The discussion argues that higher education in general has a responsibility to assist young people overcome negative stereotypical views in respect of engineering education. Universities are in the business of building human capability ethically and sustainably. As such they hold a duty of care towards the next generation. From an engineering education perspective, the major challenge is to present a relevant and sustainable learning experience that will equip students with the necessary skills and competencies for a lifelong career in engineering. This may be achieved by promoting transferable skills and competencies or by the introduction of a capabilities-driven curriculum which brings together generic and engineering skills and abilities. Social implications – In identifying the push/pull factors impacting young people's decisions to study engineering, this paper considers why, at a time of global recession, young people should select to study the required subjects of mathematics, science and technology necessary to study for a degree in engineering. The paper identifies the long-term social benefits of increasing the number of young people studying engineering. Originality/value – In bringing together pedagogy and policy within an engineering framework, the paper adds to current debates in engineering education providing a distinctive look at what seems to be a recurring problem – the failure to attract young people into engineering.
Resumo:
Our paper presents the work of the Cuneiform Digital Forensic Project (CDFP), an interdisciplinary project at The University of Birmingham, concerned with the development of a multimedia database to support scholarly research into cuneiform, wedge-shaped writing imprinted onto clay tablets and indeed the earliest real form of writing. We describe the evolutionary design process and dynamic research and developmental cycles associated with the database. Unlike traditional publications, the electronic publication of resources offers the possibility of almost continuous revisions with the integration and support of new media and interfaces. However, if on-line resources are to win the favor and confidence of their respective communities there must be a clear distinction between published and maintainable resources, and, developmental content. Published material should, ideally, be supported via standard web-browser interfaces with fully integrated tools so that users receive a reliable, homogenous and intuitive flow of information and media relevant to their needs. We discuss the inherent dynamics of the design and publication of our on-line resource, starting with the basic design and maintenance aspects of the electronic database, which includes photographic instances of cuneiform signs, and shows how the continuous review process identifies areas for further research and development, for example, the “sign processor” graphical search tool and three-dimensional content, the results of which then feedback into the maintained resource.