1000 resultados para electron affinities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population structure of walleye pollock (Theragra chalcogramma) in the northeastern Pacific Ocean remains unknown. We examined elemental signatures in the otoliths of larval and juvenile pollock from locations in the Bering Sea and Gulf of Alaska to determine if there were significant geographic variations in otolith composition that may be used as natural tags of population affinities. Otoliths were assayed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Elements measured at the nucleus of otoliths by EPMA and laser ablation ICP-MS differed significantly among locations. However, geographic groupings identified by a multivariate statistical approach from EPMA and ICP-MS were dissimilar, indicating that the elements assayed by each technique were controlled by separate depositional processes within the endolymph. Elemental profiles across the pollock otoliths were generally consistent at distances up to 100 μm from the nucleus. At distances beyond 100 μm, profiles varied significantly but were remarkably consistent among individuals collected at each location. These data may indicate that larvae from various spawning locations are encountering water masses with differing physicochemical properties through their larval lives, and at approximately the same time. Although our results are promising, we require a better understanding of the mechanisms controlling otolith chemistry before it will be possible to reconstruct dispersal pathways of larval pollock based on probe-based analyses of otolith geochemistry. Elemental signatures in otoliths of pollock may allow for the delineation of fine-scale population structure in pollock that has yet to be consistently revealed by using population genetic approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of strontium-to-calcium (Sr/Ca) ratios in otoliths is becoming a standard method to describe life history type and the chronology of migrations between freshwater and seawater habitats in teleosts (e.g. Kalish, 1990; Radtke et al., 1990; Secor, 1992; Rieman et al., 1994; Radtke, 1995; Limburg, 1995; Tzeng et al. 1997; Volk et al., 2000; Zimmerman, 2000; Zimmerman and Reeves, 2000, 2002). This method provides critical information concerning the relationship and ecology of species exhibiting phenotypic variation in migratory behavior (Kalish, 1990; Secor, 1999). Methods and procedures, however, vary among laboratories because a standard method or protocol for measurement of Sr in otoliths does not exist. In this note, we examine the variations in analytical conditions in an effort to increase precision of Sr/Ca measurements. From these findings we argue that precision can be maximized with higher beam current (although there is specimen damage) than previously recommended by Gunn et al. (1992).