968 resultados para electrochemical behavior
Resumo:
A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.
Resumo:
The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of α-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (−) compared to the (+) form, indicating greater affinity for the (−) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (−) forms of α pinene. Moths with no odor conditioning showed an innate preference for (+)-α-pinene. This preference displayed by naıve moths was not significantly different from the preferences of moths conditioned on (+)-α-pinene. However, we found a significant difference in preference between moths conditioned on the (−) enantiomer compared to naıve moths and moths conditioned on (+)-α-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of α-pinene than different odors (e.g., phenylacetaldehyde versus (−)-α-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.
Resumo:
A Burnett apparatus deslgned and fabrlcated was used to collect volumetric data for ethylene and ethylene-hydrogen mixtures. Measurements were made In the temperature range 298.15-423.15 K at Intervals of 25 K and In the pressure range 0.3-7.0 MPa. Vlrlal coefflclents derlved from the compresslblllty data are tabulated. The data are fltted to different equations of state.
Resumo:
Objective This prospective longitudinal study aims to determine the risk factors of wandering-related adverse consequences in community-dwelling persons with mild dementia. These adverse consequences include negative outcomes of wandering (falls, fractures, and injuries) and eloping behavior. Methods We recruited 143 dyads of persons with mild dementia and their caregivers from a veteran's hospital and memory clinic in Florida. Wandering-related adverse consequences were measured using the Revised Algase Wandering Scale – Community Version. Variables such as personality (Big Five Inventory), behavioral response to stress, gait, and balance (Tinetti Gait and Balance), wayfinding ability (Wayfinding Effectiveness Scale), and neurocognitive abilities (attention, cognition, memory, language/verbal skills, and executive functioning) were also measured. Bivariate and logistic regression analyses were performed to assess the predictors of these wandering-related adverse consequences. Results A total of 49% of the study participants had falls, fractures, and injuries due to wandering behavior, and 43.7% demonstrated eloping behaviors. Persistent walking (OR = 2.6) and poor gait (OR = 0.9) were significant predictors of negative outcomes of wandering, while persistent walking (OR = 13.2) and passivity (OR = 2.55) predicted eloping behavior. However, there were no correlations between wandering-related adverse consequences and participants' characteristics (age, gender, race, ethnicity, and education), health status (Charlson comorbidity index), or neurocognitive abilities. Conclusion Our results highlight the importance of identifying at-risk individuals so that effective interventions can be developed to reduce or prevent the adverse consequences of wandering.
Resumo:
Adaptive behaviour is a crucial area of assessment for individuals with Autism Spectrum Disorder (ASD). This study examined the adaptive behaviour profile of 77 young children with ASD using the Vineland-II, and analysed factors associated with adaptive functioning. Consistent with previous research with the original Vineland a distinct autism profile of Vineland-II age equivalent scores, but not standard scores, was found. Highest scores were in motor skills and lowest scores were in socialisation. The addition of the Autism Diagnostic Observation Schedule (ADOS) calibrated severity score did not contribute significant variance to Vineland-II scores beyond that accounted for by age and nonverbal ability. Limitations, future directions, and implications are discussed.
Resumo:
The annealing behavior of isotactic polybutene-1 (PB-1) has been studied by differential scanning calorimetry and wide-angle x-ray diffraction. On annealing at 110°C, PB-1 yields thick crystals melting at -140°C which are mainly of Form I. An increase in the heat of fusion (ΔHf) and crystallinity is found for annealing times up to 12 h at 110°C; at longer times these properties decrease with increasing annealing time. The increases in ΔHf and crystallinity are attributed to increases in the lamellar thickness in the chain direction and in crystal perfection, and subsequent decreases to degradation of the polymer.
Resumo:
The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.
Resumo:
Theories of search and search behavior can be used to glean insights and generate hypotheses about how people interact with retrieval systems. This paper examines three such theories, the long standing Information Foraging Theory, along with the more recently proposed Search Economic Theory and the Interactive Probability Ranking Principle. Our goal is to develop a model for ad-hoc topic retrieval using each approach, all within a common framework, in order to (1) determine what predictions each approach makes about search behavior, and (2) show the relationships, equivalences and differences between the approaches. While each approach takes a different perspective on modeling searcher interactions, we show that under certain assumptions, they lead to similar hypotheses regarding search behavior. Moreover, we show that the models are complementary to each other, but operate at different levels (i.e., sessions, patches and situations). We further show how the differences between the approaches lead to new insights into the theories and new models. This contribution will not only lead to further theoretical developments, but also enables practitioners to employ one of the three equivalent models depending on the data available.
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Resumo:
We present comprehensive studies of dc magnetization, ac susceptibility, and magnetotransport of two sets of La0.85Sr0.15CoO3 samples, one exhibits phase separation and the other exhibits spin glass behavior. Our study reveals that the phase separation in La0.85Sr0.15CoO3 is neither inherent nor ubiquitous; rather, it is a consequence of preparation condition. It is realized that the low temperature annealed sample exhibits phase separation while the high temperature annealed one shows the characteristic of spin glass behavior. This study shows that the most probable magnetic state of La0.85Sr0.15CoO3 is spin glass.
Resumo:
We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.
Resumo:
The use of capacitors for electrical energy storage actually predates the invention of the battery. Alessandro Volta is attributed with the invention of the battery in 1800, where he first describes a battery as an assembly of plates of two different materials (such as copper and zinc) placed in an alternating stack and separated by paper soaked in brine or vinegar [1]. Accordingly, this device was referred to as Volta’s pile and formed the basis of subsequent revolutionary research and discoveries on the chemical origin of electricity. Before the advent of Volta’s pile, however, eighteenth century researchers relied on the use of Leyden jars as a source of electrical energy. Built in the mid-1700s at the University of Leyden in Holland, a Leyden jar is an early capacitor consisting of a glass jar coated inside and outside with a thin layer of silver foil [2, 3]. With the outer foil being grounded, the inner foil could be charged with an electrostatic generator, or a source of static electricity, and could produce a strong electrical discharge from a small and comparatively simple device.
Resumo:
The phenomenological theory of hemispherical growth is generalised to time-dependent nucleation and growth-rates. Special cases, which include models with diffusion-controlled rates, are analysed. Expressions are obtained for small and large time behaviour and peak characteristics of potentiostatic transients, and their use in model parameter estimation is discussed. Two earlier equations are corrected. Numerically calculated transients which are presented exhibit some interesting features such as a maximum preceding the steady state, oscillations and shoulder.
Resumo:
A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.
Resumo:
The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (N-C) -> isotropic (I) -> nematic of disklike micelles (N-D) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (l') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N-C to N-D on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N-C and N-D nematic phases in step shear experiments, they were characterized to be tumbling and now aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.