944 resultados para elastic constants
Resumo:
The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly.
Resumo:
BACKGROUND. The extracellular matrix (ECM) has important roles in prostatic development, and marked stromal changes take place in the rat ventral prostate (VP) after androgen deprivation. However, little knowledge exists about individual ECM components.METHODS. The distribution of elastic fibers (EF) and elastic-related fibers (ERF) in the VP of castrated and control rats was investigated, using histochemistry and transmission electron microscopy (TEM).RESULTS. EF are barely detected in the prostatic stroma, but ERF are relatively abundant. Castration results in a relative increase in the number and thickness of ERF. TEM showed an open network of ECM microfibrils throughout the stroma and thin and short EF, which increase in number and thickness after orchiectomy.CONCLUSIONS. The presence of elastic system components in the rat VP warrants the deformability required for the secretion exclusion under the action of smooth muscle cells, and the castration-induced modification may be related to the contraction of the tissue and maintenance of peculiar arrangements of other ECM components. (C) 1997 Wiley-Liss, Inc.
Resumo:
Room temperature data of impedance and phase angle in pellets of electrochemically synthesized ClO4- doped poly(3-methylthiophene) (P3MT) were analyzed assuming the sample being represented by a parallel resistor-capacitor (RC) circuit or by a series RC circuit. The last assumption proved to be the correct one, and to confirm it we use the sample as the RC component of a resistor-capacitor-inductor series resonator. We discuss the possibility of this RC series behavior to be due to a charge-density wave characteristic also evidenced from the huge values of the low-frequency dielectric constant of the system.
Resumo:
This work presents a methodology for elastic-plastic fracture reliability analysis of plane and axisymmetric structures. The structural reliability analysis is accomplished by means of the FORM analytical method. The virtual crack extension technique based on a direct minimization of potencial energy is utililized for the calculation of the energy release rate. Results are presented to illustrate the performance of the adopted methodology.
Resumo:
The molar single activity coefficients associated with propionate ion (Pr) have been determined at 25 degrees C and ionic strengths comprised between 0.300 and 3.00 M, adjusted with NaClO4, as background electrolyte. The investigation was carried out potentiometrically by using a second class Hg/Hg2Pr2 electrode. It was found that the dependence of propionate activity coefficients as a function of ionic strength (I) can be assessed through the following empirical equation: log y(Pr) = -0.185 I-3/2 + 0.104 I-2. Next, simple equations relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous solution, at 25 degrees C, as a function of ionic strength were derived, allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as parameters associated with activity coefficients of the complex species in the equilibria are estimated. The body of results shows that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
Simple equations were derived relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous sodium perchlorate media, at 25 degrees C, as a function of ionic strength (I), allowing the interconversion of parameters from one ionic strength to another, up to I = 3.00 M. In addition, thermodynamic formation constants as well as activity coefficients of the species involved in the equilibria were estimated. The results show that the proposed calculation procedure is very consistent with critically selected experimental data.
Resumo:
We have studied the possibility of associating fluorescence microscopy and hematoxylin-eosin staining for the identification of elastic fibers in elastin-rich tissues. Elastic fibers and elastic laminae were consistently identified by the proposed procedure, which revealed itself to be easy and useful for the determination of such structures and their distribution. The fluorescence properties of stained elastic fibers are due to eosin staining as revealed by fluorescence analysis of the dye in solution, with no or only minor contribution by the elastin autofluorescence. The main advantage of this technique resides in the possibility of studying the distribution of elastic fibers in file material without further sectioning and staining. The use of the confocal laser scanning microscope greatly improved the resolution and selectivity of imaging elastic fibers in different tissues. The determination of the three-dimensional distribution and structure of elastic fiber and laminae using the confocal laser scanning microscope was evaluated and also produced excellent results.
Resumo:
This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
We use the QCD pomeron model proposed by Landshoff and Nachtmann to compute the differential and the total cross-sections for pp scattering in order to discuss a QCD-based approach to the proton form factor. This model is quite dependent on the experimental electromagnetic form factor, and it is not totally clear why this form factor gives good results even at moderate transferred momentum. We exchange the electromagnetic form factor by the asymptotic QCD proton form factor determined by Brodsky and Lepage (BL) plus a prescription for its low energy behavior dictated by the existence of a dynamically generated gluon mass. We fit the data with this QCD inspired form factor and a value for the dynamical gluon mass consistent with the ones determined in the literature. Our results also provide a determination of the proton wave function at the origin, which appears in the BL form factor.
Resumo:
Some synthetic metals show in addition to good conductivity, high microwave dielectric constants. In this work, it is shown how conduction-electron spin resonance(CESR) lineshape can be affected by these high constants. The conditions for avoiding these effects in the CESR measurements are discussed as well as a method for extracting microwave dielectric constants from CESR lines. (C) 1995 Academic Press, Inc.
Resumo:
The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .
Resumo:
This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)