963 resultados para effectiveness factor
Resumo:
Background and Aims Considerable variation has been documented with fleet safety interventions’ abilities to create lasting behavioural change, and research has neglected to consider employees’ perceptions regarding the effectiveness of fleet interventions. This is a critical oversight as employees’ beliefs and acceptance levels (as well as the perceived organisational commitment to safety) can ultimately influence levels of effectiveness, and this study aimed to examine such perceptions in Australian fleet settings. Method 679 employees sourced from four Australian organisations completed a safety climate questionnaire as well as provided perspectives about the effectiveness of 35 different safety initiatives. Results Countermeasures that were perceived as most effective were a mix of human and engineering-based approaches: - (a) purchasing safer vehicles; - (b) investigating serious vehicle incidents, and; - (c) practical driver skills training. In contrast, least effective countermeasures were considered to be: - (a) signing a promise card; - (b) advertising a company’s phone number on the back of cars for complaints and compliments, and; - (c) communicating cost benefits of road safety to employees. No significant differences in employee perceptions were identified based on age, gender, employees’ self-reported crash involvement or employees’ self-reported traffic infringement history. Perceptions of safety climate were identified to be “moderate” but were not linked to self-reported crash or traffic infringement history. However, higher levels of safety climate were positively correlated with perceived effectiveness of some interventions. Conclusion Taken together, employees believed occupational road safety risks could best be managed by the employer by implementing a combination of engineering and human resource initiatives to enhance road safety. This paper will further outline the key findings in regards to practice as well as provide direction for future research.
Resumo:
Through-bond interactions in 1,4-dehydrobenzene preferentially stabilize the out-of-phase combination of the radical hydrids, The resultant splitting between the frontier orbitals is crucial in making Bergman cyclization a symmetry-allowed process. Orbital symmetry also inhibits the radical centers from forming a C-C bond, enabling the biradical to survive as a local minimum capable of intermolecular hydrogen abstraction, Both these factors, which are important in the design of DNA cleaving molecules, are confirmed through calculations on biradicals formed from diynes in which through-bond interactions stabilize the in-phase combination of hybrids at the radical centers.
Resumo:
Children and young people as environmental citizens the environmental education perspective to participation This doctoral thesis examines the participation of children and young people in developing their own environment at school, as a part of environmental education. The aim of the research is to assess and consider children and young people s environmentally responsible participation and its effectiveness in relation to the participants own learning and the end results of the participation. The research combines the perspectives of environmental education and citizenship education through the concept of environmental citizenship. Environmental education, which enhances environmental citizenship, offers children and young people the possibility to be active citizens and learn about citizenship in their own lives by taking action themselves. The research is made up of two parts which complement each other. The first part consists of an action research carried out in the Joensuu Lyseo Upper Secondary School, where an environmental education course with a traffic-related theme was planned, developed and evaluated. The second part is made up of an interview survey carried out in Helsinki. In the survey actors from schools and various city offices, who were involved in development projects of school environments, were interviewed. According to the research results, all-round cooperation and more open relations with those outside of the school environment are important ways to support environmental citizenship in schools. Thus, environmentally responsible participation offers a chance to learn competence that an environmental citizen needs the knowledge, skills and willingness to act that have not been successfully taught through traditional school education. The research introduces a model of environmentally responsible participation as a learning process, in which learning is studied through the development of competence, self-empowerment and social empowerment. The model makes the context of environmental education visible and puts emphasis on reflection in the learning process. A central factor in children and young people s self-empowerment is the sense of being heard and taken into consideration. At the moment children and young people s rights to participate are strong, due to legislation, school curricula, and several national and international agreements. Despite this, involving them in developing their own immediate surroundings has not become a part of schools and planning organisations daily life and established methods. Reasons for this situation can be found in the lack of regard and resources for these matters, in the complex nature of planning and a long time frame, and the problems of ownership and of reaching each other. Central to overcoming these obstacles are a gradual change in conduct and mentalities and the strengthening of teachers and officials competence. Children and young people need different ways and methods of varying levels of involvement, structures and arenas which enable participation and in which environmental citizenship can be realized. Key words: environmental citizenship, environmental education, citizenship education, children and young people s participation, social learning, self-empowerment, social empowerment, school, community planning
Resumo:
Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.
Resumo:
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Resumo:
Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.
Resumo:
This is a revised text of the third lecture of the 2014 public lecture series, "The Path Toward a Global Civilzation" hosted by the Institute of Oriental Philosophy on October 2 in Tokyo. Dr Desha is a research principal of the Australian team at the Natural Edge Project which published Factor 5: Transforming the Global Economy through 80% Increase in Resource Productivity (2009) in collaboration with Dr Ernst Ulrich von Weizsacker.
Resumo:
In this communication, we report the spontaneous and reversible in vitro self-assembly of a polypeptide fragment derived from the C-terminal domain of Insulin-like Growth Factor Binding Protein (IGFBP-2) into soluble nanotubular structures several micrometres long via a mechanism involving inter-molecular disulfide bonds and exhibiting enhanced fluorescence.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.