934 resultados para eccentric muscle contraction
Resumo:
Purpose: Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods: Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results: CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion: These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
Objective: The study examined symptom-specific muscle hyperreactivity in patients with chronic pain with upper limb cumulative trauma disorder (CTD). Design: Four tasks were presented in counterbalanced order and included neutral, general stressor, personal stressor, and pain stressor tasks. Ratings of stressfulness and recordings of skin conductance level confirmed the effectiveness of the experimental manipulations in inducing stress experiences for all subject groups. Setting: The study was conducted in a university research center. Patients: Thirty patients with CTD were matched as closely as possible for age and gender to control groups of chronic low back pain, arthritis, and pain-Free subjects Outcome Measures: Surface electromyograph recordings were taken from the frontalis, forearm flexors, trapezius, and lower back during baseline and tasks. Results: The study found no evidence of greater muscle tension increases or extended duration of return to baseline for the CTD or low back pain patients at any of the muscle sites for any of the tasks in comparison to control groups. Conclusions: The results indicate that symptom-specific psychophysiological responses may be limited to certain subgroups rather than being characteristic of chronic musculoskeletal pain patients in general.
Resumo:
Perineal ultrasound was used to detect and quantify levator activity by measuring the displacement of the internal urethral meatus against the inferoposterior margin of the symphysis pubis, Women who had previously been instructed in pelvic floor muscle exercises were more likely to contract the levator muscle when asked to do so than were those without previous instruction (P
Resumo:
Changes in trunk muscle recruitment have been identified in people with low-back pain (LBP). These differences may be due to changes in the planning of the motor response or due to delayed transmission of the descending motor command in the nervous system. These two possibilities were investigated by comparison of the effect of task complexity on the feedforward postural response of the trunk muscles associated with rapid arm movement in people with and without LBP. Task complexity was increased by variation of the expectation for a command to either abduct or flex the upper limb. The onsets of electromyographic activity (EMG) of the abdominal and deltoid muscles were measured. In control subjects, while the reaction time of deltoid and the superficial abdominal muscles increased with task complexity, the reaction time of transversus abdominis (TrA) was constant. However, in subjects with LBP, the reaction time of TrA increased along with the other muscles as task complexity was increased. While inhibition of the descending motor command cannot be excluded, it is more likely that the change in recruitment M of TrA represents a more complex change in organisation of the postural response.
Resumo:
This study assessed the quadriceps and hamstring strength before and 6 months after anterior cruciate ligament (ACL) reconstructive surgery using the hamstrings and related the findings to functional performance. Six months after surgery is a critical time for assessment as this is when players are returning to sport. Maximum isokinetic strength of 31 patients with complete unilateral ACL ruptures was measured at speeds of 60 degrees and 120 degrees per second. Functional assessment included the single hop, the triple hop, the shuttle run, side-step and carioca tests. All patients underwent a controlled quadriceps emphasized home-based physiotherapy program both before and after surgery. Results show that before surgery there was a 7.3% quadriceps strength deficit at 60 degrees per second compared to the uninjured leg but no hamstring strength deficit. After surgery there was a statistically significant but relatively small loss of muscle strength. The quadriceps strength deficit had increased to 12% and there was a 10% hamstring deficit. Post-operatively there was an 11% and 6.3% improvement in the hop tests, a 9% (P < 0.01) improvement in the shuttle run, a 15% (P < 0.001) improvement in the side step and a 24% (P < 0.001) improvement in the carioca tests (P < 0.001) despite the loss of muscle strength. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The role of the small GTP-binding protein Rho in the process of smooth muscle cell (SMC) phenotypic modulation was investigated using cultured rabbit aortic SMCs. Both Rho transcription and Rho protein expression were high for the first 3 days of culture ("contractile" state cells), with expression decreasing after change to the "synthetic" state and peaking upon return to the contractile phenotype. Activation of Rho (indicated by translocation to the membrane) also peaked upon return to the contractile state and was low in synthetic state SMCs. Transient transfection of synthetic state rabbit SMCs with constitutively active Rho (vall4rho) caused a dramatic decrease in cell size and reorganization of cytoskeletal proteins to resemble those of the contractile phenotype; alpha-actin and myosin adopted a tightly packed, highly organized arrangement, whereas vimentin localized to the immediate perinuclear region and focal adhesions were enlarged. Conversely, specific inhibition of endogenous Rho, by expression of C3 transferase, resulted in the complete loss of actin and myosin filaments without affecting the distribution of vimentin. Focal adhesions were reduced in number. Thus, Rho plays a key role in regulating SMC phenotypic expression.
Resumo:
P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
The Green-striped burrowing frog. Cyclorana alboguttata survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and Mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in muscle atrophy and a decrease in muscle performance. We examined the effect of aestivation and hence prolonged immobilisation, on skeletal Muscle mass. in vitro muscle performance, and locomotor performance in C. alboguttata. Frogs were aestivated in soil for 3 months and were compared with control animals that remained active, were fed, and had a continual supply of water. Compared to the controls, the wet mass of the gastrocnemius. sartorius, gracilus major. semimembranosus. peroneus, extensor cruris, tibialis posticus and tibialis anticus longus of aestivators remained unchanged indicating no muscle atrophy. The in-vitro performance characteristics of the gastroenemius muscle were maintained and burst swimming speed Was Unaffected, requiring no recovery from the extended period of immobilisation associated with aestivation. This preservation of muscle size, contractile condition and locomotor performance through aestivation enables C. alboguttata to compress their life history into unpredictable windows of opportunity, whenever heavy rains occur.