928 resultados para earthmoving and surface mining
Resumo:
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.
Resumo:
A perylene derivative, n-(n-butyl)-n'-(4-aminobutyl) perylene-3,4,9,10-tetracarboxylic acid diimide (simplified as nBu-PTCD-(CH2)(4)-NH2) has been chosen as the target molecule for studies involving single molecule detection (SMD) using Raman scattering. The enhancement of the Raman signal is the result of the multiplicative effects of two phenomena, resonance Raman scattering (RRS) and surface-enhanced Raman scattering (SERS), which leads to the resulting surface-enhanced resonance Raman scattering (SERRS) process. The SERRS spectra from a single molecule have been collected using both silver and gold colloids. The SMD detection of the fundamental vibrational frequencies characteristic of nBu-PTCD-(CH2)(4)-NH2 is complemented with the detection of some overtones and combinations from ring stretching modes at the single molecule level. The background characterization of the ensemble vibrational spectroscopy of the target perylene and its SERRS is also presented, which includes the UV-vis absorption, experimental and calculated Raman scattering and infrared absorption, and molecular organization using reflection-absorption infrared spectroscopy (RAIRS).
Resumo:
Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application.Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for I min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24 h prior to sectioning. After sectioning the ceramic-cement blocks in x- and Y-axis with a bonded area of approximately 0.6 mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times) + water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1 mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha = 0.05).Results. Significant influence of the use of silane (p < 0.0001), storage conditions (p = 0.0013) and surface treatment were observed (p = 0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APT treatment increased the results dramatically (14.5 +/- 4.2-17.4 +/- 4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic.Significance. Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Size and surface dynamical effects are investigated in thin superconducting stripes with variable width. We perform numerical simulations of the vortex dynamics, with the inclusion of the surface confining potential and a random distribution of pinning centers. To fully characterize the vortex flow, we calculate the differential resistance, the transverse diffusion coefficient, the structure factor and the intensity of the Bragg peaks, as functions of the transport force. We found that surface effects induce a premature ordering of the flux line lattice, and the system displays plastic and smectic behavior only in a very narrow range of forces. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A case study of convective development in the Southwest Amazon region during the Wet Season Atmospheric Mesoscale Campaign (WETAMC) and Tropical Rainfall Measuring Mission (TRMM)/Large-Scale Biosphere-Atmosphere (LBA) Experiment in Amazonia is presented. The convective development during 7 February 1999 is shown to occur during a period of very weak large-scale forcing in the presence of topography and deforestation. The available data include dual Doppler radar analysis, radiosonde launches, and surface and boundary layer observations. The observational analysis is complemented with a series of model simulations using the RAMS with 2-km resolution over a 300 km 300 km area forced by a morning radiosonde profile. A comparison of the observed and simulated thermodynamic transformation of the boundary layer and of the formation of convective lines, and of their kinematic and microphysical properties is presented. It is shown that only a few very deep and intense convective cells are necessary to explain the overall precipitating line formation and that discrete propagation and coupling with upper atmosphere circulations may explain the appearance of several lines. The numerical simulation indicates that topography may be the cause of initial convective development, although later on the convective line is parallel to the midlevel shear. There are indications that small-scale deforestation may have an effect on increasing rainfall in the wet season when the large-scale forcing is very weak.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline tin oxide thin films were prepared from ethanol solution of SnCl2.H2O (concentrations: 0.05, 0.1, 0.2 and 0.4 mol/dm(3)) at different substrate temperatures ranging from 300 to 450 degreesC. The kinetic deposition processes were studied in terms of various process parameters. The crystal phases, crystalline structure, grain size and surface morphology are revealed in accordance to X-ray diffractometry and scanning electron microscopy (SEM). Texture coefficients (TCs) for (110), (2 0 0), (2 11) and (3 0 1) reflections of the tetragonal SnO2 were calculated. Structural characteristics of deposited films with respect to varying precursor chemistry and substrate temperature are presented and discussed. (C) 2003 Published by Elsevier B.V.
Resumo:
Langmuir monolayers and Langmuir-Blodgett (LB) films have been produced from polyaniline and a biphosphinic ruthenium complex, referred to as Rupy. Strong, repulsive interaction between the two components led to a nonlinear change in area per molecule and surface potential with the concentration of Rupy in the mixed film. Molecular interaction was also denoted in the spectroscopic and electrochemical properties of the Y-type LB transferred films. The Raman spectra of mixed PANI-Rupy films indicated that the degree of oxidation of PANI increased linearly with the concentration of Ropy. With PANI being increasingly oxidized by presence of Rupy, the electroactivity of the mixed films decreased with the amount of Rupy, to become undetectable when the mixed LB film is 501 mol in Rupy. The presence of Rupy caused the electrical properties of the mixed LB films to be less sensitive to environmental changes. The electrical capacitance of a mixed film changed only by 15% when the sample was taken from vacuum to air, whereas the change was 215% for a pure PANI LB film.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CaMoO4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
ZnO has received great attention in many applications due to its electronic and optical properties. We report on the preparation of ZnO and gallium-containing ZnO (ZnO:Ga) nanoparticles by the precipitation method. The nanoparticles have the wurtzite structure and a high crystallinity. Gallium ions are present as Ga(3+), as evidenced by the binding energies through XPS. Porosity and surface area of the powder increased under increasing gallium level, explained by the smaller particle size of ZnO:Ga samples compared with ZnO. The estimated optical band gap of ZnO was 3.2 eV, comparable to ZnO:Ga.
Resumo:
In hospitals, one of the ways to control microbial contamination is by disinfecting the furniture used by patients. This study's main objective was to evaluate the microbiological condition of hospital mattresses before and after such disinfection, in order to identify bacteria that are epidemiologically important in nosocomial infection, such as Staphylococcus aureus and Pseudomonas aeruginosa. RODAC plates with two different culture media were used to collect specimens. Patient beds were selected according to previously established criteria, and surface areas on the mattresses were chosen at random. From the total of 1 040 plate cultures from 52 mattresses, positive results were obtained from 500 of them (48.1%), 263 before disinfection and 237 after disinfection. Considering the selectivity of the culture media, the positivity rate was high. There were high prevalences of S. aureus both before and after mattress disinfection. The study results suggest that the usual disinfection procedures, instead of diminishing the number of microbes, merely displace them from one part of the mattress to another, and the number of microorganisms remains the same.
Resumo:
Purpose: The purpose of this study was to quantitatively evaluate the effect of 10% carbamide peroxide on the microhardness of pit and fissure sealant materials. Methods: Fluroshield, Vitroseal Alfa, and one unfilled (Clinpro) sealants were placed in Teflon matrices (4 mm in diameter by 2 mm in height) and polymerized for 40 seconds. A total of 20 specimens were prepared for each material, in which half were assigned as the control group (stored in artificial saliva and no bleaching treatment). For the remaining half, Clarigel Gold bleaching agent (10% carbamide peroxide) was placed over the specimen surface for 4 hours/day during 4 weeks. When specimens were not under bleaching treatment, they were kept in artificial saliva. Afterwards, specimens were subjected to Knoop microhardness testing using a 25-g load for 5 seconds. Five measurements were made on the sealants' surfaces and then calculated in Knoop hardness values. The data were statistically analyzed by two-way analysis of variance and Tukey's tests with a 5% confidence level. Results: The results of this in vitro study showed that the application of a carbamide peroxide-based bleaching material significantly affected the microhardness values of filled sealant materials. The bleaching agent did not affect the microhardness of the unfilled sealant. CLINICAL SIGNIFICANCE: The results of this in vitro study suggest that the bleaching agents altered the surface hardness of filled sealant restorative materials. This could possibly lead to increased wear and surface roughness. © 2006, Copyright the authors.